
H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 1 of 89

30/09/2017
Version 1.0

Due date of deliverable: 30/09/2017
Actual submission date: 30/09/2017

Project co-funded by the European Commission within the Horizon 2020 Framework Programme

Dissemination Level
PU Public X
PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

C3ISP
Collaborative and Confidential Information Sharing and Analysis for Cyber

Protection

First version of C3ISP Architecture

WP7 – C3ISP platform: Requirements / Architecture /
Implementation and integration

D7.2

Responsible partner: HPE
Editor: Mirko Manea

E-mail address: mirko.manea at hpe.com

The C3ISP Project is supported by funding under the Horizon 2020
Framework Program of the European Commission DS 2015-1, GA #700294

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 2 of 89

Authors: C. Gambardella, M. Manea (HPE), T. Nguyen, V.

Herbert (CEA), I. Herwono (BT), R. de Lemos, D.
Chadwick (UNIKENT), F. Di Cerbo, J. Boehler
(SAP), P. Mori, A. Saracino, G. Costantino, I.
Matteucci (CNR), J. Dobos (3DREPO)

Approved by: R. de Lemos (UNIKENT), F. Di Cerbo (SAP)

Revision History

Version Date Name Partner Sections Affected / Comments

0.1 26-Jun-2017 M. Manea HPE Initial ToC
0.2 03-Jul-2017 M. Manea HPE Appointed UNIKENT and SAP as

internal reviewers
0.3 25-Jul-2017 M. Manea,

C. Gambardella
HPE Added HPE contribution

0.4 28-Jul-2017 C. Gambardella, R.
de Lemos, D.
Chadwick, I.
Herwono, T.
Nguyen, V. Herbert

HPE,
UNIKENT,
BT CEA

Merged contribution from
UNIKENT, BT, CEA

0.5 22-Aug-2017 P. Mori, A.
Saracino, G.
Costantino, I.
Matteucci

CNR Merged contribution from CNR

0.6 28-Aug-2017 J. Dobos 3DREPO Merged contribution from 3DREPO
0.7 30-Aug-2017 F. Di Cerbo SAP Merged contribution from SAP
0.8 08-Sep-2017 M. Manea,

C. Gambardella
HPE Ready for Internal Review

0.9 26-Sep-17 J. Ziembicka,
R. de Lemos

UNIKENT Internal review

1.0 29-Sep-17 C.Gambardella,
M.Manea

HPE Final version

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 3 of 89

Executive Summary
The objective of this deliverable is to define first version of the reference architecture for C3ISP
Framework. The starting point for this work has been the requirements collected and described
in the deliverable 7.1, in particular those involving the project Pilots. The architecture meets
the functional and non-functional requirements derived from the Pilot’s business needs and it
provides a generic Framework that serves as basis for the following development phase that
will lead to the first version of the C3ISP Framework reference architecture implementation
(due at Month 24). The content of the deliverable has been built in collaboration with our
partners, taking into consideration the needs of the other work packages (in particular WP6,
representing the Pilots, and WP8), by collecting and considering different viewpoints in order
to realise a coherent, flexible and easily integrated architecture.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 4 of 89

Table of contents
Executive Summary .. 3	
1.	 Introduction ... 7	

1.1.	 Overview .. 7	
1.2.	 Deliverable Structure .. 7	
1.3.	 Definitions and Abbreviations ... 7	

2.	 High-Level Architecture ... 10	
2.1.	 Micro-services architecture .. 12	

3.	 Deployment Models .. 14	
3.1.	 Fully centralised: Centralised ISI and IAI .. 15	
3.2.	 Hybrid: On-Premises ISI with Centralised ISI and IAI ... 16	
3.3.	 Distributed ISI: On-Premises only ISI and Centralised IAI 17	
3.4.	 Fully distributed: On-Premises ISI and IAI ... 18	
3.5.	 Instantiation of the Architecture in the Pilots ... 18	

3.5.1.	 ISP Pilot .. 19	
3.5.2.	 CERT Pilot .. 19	
3.5.3.	 Enterprise Pilot .. 19	
3.5.4.	 SME Pilot .. 19	

4.	 Subsystem: ISI – Information Sharing Infrastructure ... 21	
4.1.	 DSA Adapter .. 22	

4.1.1.	 Continuous Authorization Engine ... 23	
4.1.2.	 Obligation Engine ... 25	
4.1.3.	 DMO Engine ... 27	
4.1.4.	 Bundle Manager .. 28	

4.2.	 Format Adapter .. 29	
4.3.	 Data Protected Object Storage ... 30	
4.4.	 ISI API ... 31	

5.	 Subsystem: IAI – Information Analytics Infrastructure ... 33	
5.1.	 C3ISP Analytics Engine ... 33	

5.1.1.	 FHE Analytics ... 35	
5.1.2.	 Interactive 3D Visualisation ... 36	

5.2.	 Service Usage Control Adapter .. 37	
5.3.	 Interface to Legacy Analytics Engines ... 38	
5.4.	 Virtual Data Lake ... 39	
5.5.	 IAI API ... 40	

6.	 Subsystem: DSA Manager .. 41	
6.1.	 DSA Editor ... 41	

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 5 of 89

6.2.	 DSA Mapper .. 43	
6.3.	 DSA Store .. 44	
6.4.	 DSA API .. 45	

7.	 Subsystem: CSS – Common Security Services .. 46	
7.1.	 Identity Manager .. 46	
7.2.	 Key and Encryption Manager .. 48	

7.2.1.	 K&E Core ... 49	
7.2.2.	 Key Management .. 50	
7.2.3.	 DPO - Key & Encryption Manager .. 52	
7.2.4.	 FHE - Key & Encryption Manager ... 53	

7.3.	 Secure Audit Manager .. 57	
8.	 Data Flow Diagrams ... 59	

8.1.	 Create CTI .. 59	
8.2.	 Read shared CTI ... 61	
8.3.	 Move CTI ... 61	
8.4.	 Delete CTI .. 63	
8.5.	 Invoke C3ISP analytics service .. 63	
8.6.	 Invoke legacy analytics service .. 64	

9.	 Requirements mapping from D7.1 .. 66	
9.1.	 Data Sharing Requirements .. 66	
9.2.	 Data Analytics Requirements ... 67	
9.3.	 Data Manipulation Operations ... 70	
9.4.	 Non-Functional Requirements ... 70	

9.4.1.	 Information Security Requirements .. 70	
9.4.2.	 Regulatory Requirements .. 71	
9.4.3.	 Operational Requirements .. 72	
9.4.4.	 Performance Requirements ... 73	
9.4.5.	 Usability Requirements ... 73	

10.	 Update on the Development and Test Bed Environments ... 75	
10.1.	 Development Environment ... 75	

10.1.1.	 Base configuration ... 75	
10.1.2.	 Software configuration .. 76	

10.2.	 Test Bed Environment .. 81	
10.2.1.	 Base configuration ... 81	
10.2.2.	 Software configuration .. 81	

11.	 Conclusions .. 82	
12.	 Appendix 1: Differential Privacy ... 83	

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 6 of 89

13.	 Appendix 2: Homomorphic Computation ... 84	
14.	 References .. 86	

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 7 of 89

1. Introduction
1.1. Overview
This document presents the first version of the reference architecture for the C3ISP Framework,
as it has been designed to satisfy the requirements from the project Pilots. This reference
architecture will form the basis under which the development and integration activities will take
place during the next months, while implementing the first version of the C3ISP reference
architecture by Month 24 (see DoW). That implementation will be installed in the C3ISP test
environment and will be used for project Pilots testing and integration tasks.

1.2. Deliverable Structure
The document is structured as follows:

• The description of the high-level architecture has been provided (Sect. 2), proposing the
possible deployment models for it (Sect. 3).

• Sect. 4 is dedicated to the presentation of the instantiation of the architecture on the
Pilots.

• Then, the deliverable provides a clear description of all the architectural components,
with a dedicated section describing their details (Sect. 5-8).

• In order to provide a coherent view of the roles of all the subsystems, a set of data flow
diagrams that describe the main operations of the reference C3ISP Framework (Sect. 9).

• Sect. 10 maps the requirements listed in the D7.1 to the C3ISP Framework components
and functionalities of the reference architecture, in order to match the coverage in the
designed architecture.

• The deliverable concludes by illustrating the status of the development and test bed
environment at Month 12.

1.3. Definitions and Abbreviations
Term Meaning

AES Advanced Encryption Standard

C&C Command and Control

C3ISP Collaborative and Confidential Information Sharing and Analysis for
Cyber Protection

CybOX Cyber Observable eXpression

CI Continuous Integration

CPE Common Platform Enumeration

CSP Cloud Service Provider

CSS Common Security Services

CTI Cyber Threat Information

CVE Common Vulnerability and Exposure

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 8 of 89

CWE Common Weakness Enumeration

DAST Dynamic Application Security Testing

DDoS Distributed Denial of Service

DMO Data Manipulation Operations

DoW Description of Work for Grant Agreement: 700294 — Collaborative and
Confidential Information Sharing and Analysis for Cyber Protection
(C3ISP)

DPOS Data Protected Object Storage

DPO Data Protected Object

DSA Data Sharing Agreement

FHE Full Homomorphic Encryption

GDPR General Data Protection Regulation (EU 2016/679), http://eur-
lex.europa.eu/eli/reg/2016/679/oj

IAI Information Analytics Infrastructure

IDE Integrated Development Environment

IDS Intrusion Detection System

IP Internet Protocol

ISI Information Sharing Infrastructure

LTS Long-Term Support

LOWMC Low Multiplicative Complexity (a family of block ciphers)

MITRE The MITRE Corporation, https://www.mitre.org/

NFR Non Functional Requirement

NVD National Vulnerability Database

OASIS Organization for the Advancement of Structured Information Standards

OWASP Open Web Application Security Project

OpenC2 Open Command and Control

MoSCoW Must have, Should have, Could have, and Won’t have but would like

Multiplicative
depth

Multiplicative depth is the maximum number of multiplicative gates
between an input and an output of the circuit

PKI Public Key Infrastructure

PRINCE 64-bit block cipher with a 128-bit key optimized for low latency in
hardware

Prosumer An entity which is both a producer and a consumer of information, in
particular of Cyber Threat Information

REST Representational state transfer, a type of web services

RFI Remote File Inclusion attack

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 9 of 89

SaaS Software as a Service

SQLi SQL injection attack

STIX Structured Threat Information eXpression

TAXII Trusted Automated eXchange of Indicator Information

TTP Techniques, Tactics and Procedures

VCG VisualCodeGrepper

VM Virtual Machine

WAVSEP Web Application Vulnerability Scanner Evaluation Project

XSS Cross-Site Scripting attack

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 10 of 89

2. High-Level Architecture
This section describes at a high-level the C3ISP Framework reference architecture (notion
introduced in D7.1, Section 1.2), in particular the system actors, the set of subsystems with their
core components as well as their interaction. The next sections will drill down and illustrate the
design-level specification for each component. We have adopted the “Fundamental modeling
concepts” (FMC) Framework [66] for describing the architecture components and the
communication between them, realising the architectural diagrams in a top-down approach
(from the high level architecture to the detailed subsystems).
The system actors are Prosumers entities, sometimes also expanded with their specific roles of
Producer and Consumer. The role of Producer is assumed by the one who supplies its own data
to the C3ISP Framework for sharing it with other entities, which are Consumers of the data; the
sharing is regulated by policies (i.e. a set of rules) defined on the data. The Prosumer is a
generalisation of the Producer and Consumer roles (shown in Figure 1); namely, an actor may
use the C3ISP Framework assuming both the role of Producer or Consumer, meaning that in a
collaborative approach, s/he can provide data to the C3ISP Framework in order to improve the
knowledge base shared between the other actors and also take advantage from it, retrieving data
supplied by others or run analytics services on the whole dataset.

Figure 1: Actors hierarchy

Figure 2 shows the C3ISP reference architecture. From top-down, the C3ISP subsystems are:
• Data Sharing Agreement (DSA) Manager;

• Information Sharing Infrastructure (ISI);

• Information Analytics Infrastructure (IAI);

• Common Security Services (CSS).

The Data Sharing Agreement (DSA) Manager is in charge of handling the DSA object, which
encapsulates the policy requirements (i.e. the set of rules) under which a protected data object
(CTI data) can be used and shared. The DSA Manager subsystem handles the DSA lifecycle,
from the editing phase to its usage till its termination. The Prosumers, collaboratively, define
the sharing and analytics rules to be used by the C3ISP Framework to handle the Prosumers’
provided data, thus considering all the set of jointly agreed requirements.
The Information Sharing Infrastructure (ISI) is the subsystem used by a Prosumer to provide
data to the C3ISP users (i.e. the other Prosumers) under the governance of an appropriate DSA.
Depending on several factors, like the trust assumptions a Prosumer has on the infrastructure,
computational requirements, etc., the ISI can be both deployed locally and remotely, or remote-
only. In both cases, the core feature of the subsystem is provided by the DSA Adapter, a
component that is able to enforce the DSA rules, in particular those related to access and usage
control, and the manipulation of the data itself (through the DMOs, Data Manipulation

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 11 of 89

Operations). A Producer is the actor that can submit its data to the C3ISP Framework and
optionally a Consumer could use the ISI to retrieve shared data, both under the constraints of
the DSA policies. Data protected under the DSA policies is stored securely (e.g. encrypted) in
a Data Protected Object Storage.
The Information Analytics Infrastructure (IAI) subsystem provides the interface to invoke
analytics services on the data that has been shared and (centrally) stored through the ISI. The
analytics execution result is computed considering the associated DSA rules, which also apply
to the handling of the resulting data that will have its own derived DSA rules (elaborated on the
individual DSA each Prosumer assigned to their data). The result is submitted again to the ISI
to be both shared between the C3ISP users and possibly used as an input for a new analytics
service. In addition, to be able to manage legacy analytics engines (see requirement C3ISP-
Fun-DA-0111 from D7.1), upon such requests, the subsystem instantiates a Virtual Data Lake,
prepared to be used by the required legacy analytics service: this lake2 contains data that is
prepared according to the DSA rules and usage constraints (e.g. part of the data could be
anonymised, etc.). The Consumer actor is the person in charge of requesting the analytics
services to be executed.
Finally, a bunch of integrated Common Security Services (CSS) are necessary to support the
functions of the C3ISP Framework. For instance, access and usage control need identities and
profile information from and Identity Manager to evaluate their logic; a Secure Audit Manager
is necessary to trace the operations performed within the C3ISP Framework, in particular those
related to access and usage decisions and in general to guarantee the system accountability to
show it operates as planned and as specified in the DSA rules; a Key and Encryption Manager
is necessary to provide the confidentiality of the computations (in the case of homomorphic
encryption) and the secrecy for the shared CTI data.

1 C3ISP-Fun-DA-011: “C3ISP provides an interface to integrate external analytics tools while preserving the
policy compliance (i.e. extract data from C3ISP data lake and feed it into analytics tool)”
2 Even though the Virtual Data Lake and the Data Protected Object Storage are both data repository, they serve
different purposes: the former contains data ready for the analytics services processing, the latter contain
protected sharable data (e.g. encrypted, as it will be clear in section 4.1.4).

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 12 of 89

Figure 2: C3ISP high-level architecture – version 1 (Month 12)

2.1. Micro-services architecture
From a more technical standpoint, the approach we are following aims to realise a micro-
services architecture that consider the framework not as a monolithic object but as a collection
of small and mutually independent services, which can be implemented separately and
communicate with others services through an exchange of messages (mainly using Web
Services REST-based). The C3ISP Framework itself exposes API/services to the clients; these
are intended not for end user but Pilot applications that will use these services to implement
their business scenarios.
As typical in distributed architecture, all the communications happens via Web Services that
need to be protected for authentication and authorisation, and we plan to leverage on the Identity
Manager component for that (see Sect. 7.1). OAuth2 [57] is a well-known standard that can be
used also for API protection. It is an authorisation framework that integrates with different
authentication mechanisms. An important feature of OAuth2 is that it allows to propagate the
identity of the calling user/client: in this way each component in the architecture will always be
able to have the proper context of which Prosumer initiated the request.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 13 of 89

In general C3ISP APIs have two levels of protection:
1. Authentication Level: API protection at http-level: this is used to guarantee access

control at method level and to provide identity information to the API (through
authentication);

2. Authorisation Level: API protection through DSA rules (e.g. for authorizing
create/read/delete of CTI data): DSA could contain rules for granular method protection,
like group-based authorization, RBAC or the more general ABAC model. For example,
we could express that only users with a certain role can delete a shared file.

A micro-service architecture also fosters the development of a multi-tenanted C3ISP
Framework, with the possibility to instantiate and scale each service easily, where C3ISP could
be used by different tenants (i.e. Pilots) at the same time.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 14 of 89

3. Deployment Models
We foresee different ways to implement the C3ISP Framework and we refer to them as
deployment models. A deployment model is a specific C3ISP Framework configuration in
which the C3ISP subsystems are deployed to match specific use case scenarios requirements.
The Prosumers choose the deployment model according to their specific business requirements,
in particular taking into account the level of trust they have or need for the use cases to be
supported (each C3ISP Pilot evaluates and selects the most appropriate deployment model).
The deployment models describe where the main C3ISP subsystems can be deployed,
specifically on-premises, in the Prosumer’s environment, on a centralised environment or in a
combination of these approaches.
We identified four deployment models for supporting a broad range of possible scenarios and
the Pilots’ implementation in particular:

• Fully centralised: both ISI and IAI are centralised;

• Hybrid: ISI is both on-premises and centralised, with a centralised IAI;

• Distributed ISI: ISI is on-premises only and IAI is centralised;

• Fully distributed: both ISI and IAI are on-premises.

The following picture shoes the trade-offs in the deployment models:

Figure 3: Deployment models trade-offs

A special consideration has to be made for the CSS subsystem: this subsystem has a critical
role for the trustworthiness of the C3ISP Framework, in particular when considering distributed
scenarios. For example, a distributed CSS for identity management could leverage on identity
federation technologies. Key and encryption services could leverage on PKI to address key
distribution issues. Auditing, however, should preferably be centralised, maybe at a third party,
to address segregation of duties and non-repudiation. However, at this stage, we foresee a
mainly centralised deployment for CSS with the assumption that it has to be trusted by all the
Prosumers involved. In any case, the architecture can cope with existing consolidated solutions
in the domain of identity management, key and encryption manager, auditing, provided that
they use standard interfaces and in any way aligned with the expectations expressed here.
Indeed, the project does plan to integrate free/open source software solutions to fulfil these
needs (see section 7), leaving to the pilot implementation and deployment phases the task to
verify the consistency and the security of the final system. In the upcoming deliverables, the
results of the reference implementation activities will also deepen the descriptions and
requirements for the security features of CSS services in distributed scenario, also providing
possible implementation options.
The next sections describe each deployment model. For better identifying the trust boundaries
in the deployment models, we have adopted a colour code in the components diagrams
describing them. In particular, we use the green colour to delimit the trusted zones (where the

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 15 of 89

Prosumer has more control) and orange for the untrusted ones (where the Prosumer has less
control).

3.1. Fully centralised: Centralised ISI and IAI
The simplest deployment model is an architecture where all the subsystems are installed in a
centralised environment and the Prosumers operate on them remotely only (see Figure 4, where
for the sake of simplicity CSS subsystem is not shown).

Figure 4: Fully centralised deployment model (Centralised ISI and IAI)

The picture shows the main C3ISP subsystems and focuses on the interactions between them
and the Prosumers. The Producers (e.g. Producer 1, 2, n) submit data to the C3ISP Framework
interacting with a centralised remote ISI: the sharing is regulated by policies defined in a DSA.
The Prosumers define DSAs using the services provided by a DSA Manager (deployed with a
SaaS approach) and the DSAs are stored in a common central repository. The Consumers use
the analytics services exposed by a centralised IAI on the data provided by the ISI.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 16 of 89

3.2. Hybrid: On-Premises ISI with Centralised ISI and IAI
According to some implementation preferences, like the level of trust required by the use case
or particular business needs, the ISI can be deployed both on-premises, in the local environment
of the Producer, and in a centralised infrastructure, as schematised in the following picture.

Figure 5: Hybrid deployment model (On-Premises ISI with Centralised ISI and IAI)

In this approach, a locally instantiated ISI allows a Producer (e.g. Producer 1) to share data with
others Producers (e.g. Producer 2, Producer n), thanks to a centralised ISI, which is used to
submit and retrieve the data to be shared with the C3ISP actors, as well as to interact with a
centralised IAI for the analytics services. Some DSA policies could be enforced locally (on
each local ISI) and some remotely: this model is well suited when a Producer wants to apply
DMOs like data anonymisation (or some access/usage rules) before sharing its data with the
centralised ISI infrastructure, where other specific DSA policies might apply. For example, a
Producer could pre-process its data by anonymising some parts, before moving them outside of
its premises (so out of its control) to be further shared and used with the analytics services.
This hybrid model also allows a producer (e.g. Producer n+1) to interact directly with the central
ISI, thus making it a generalisation of the Fully centralised model described earlier.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 17 of 89

3.3. Distributed ISI: On-Premises only ISI and Centralised IAI
If the Producers need to have full control of the ISI component and want to interact directly
with the IAI, or have others constraints which do not allow a remote ISI (e.g. do not want to
store data remotely because of luck of trust), an on-premises-only ISI deployment model is the
best option (described in the next picture).

Figure 6: Distributed ISI deployment model (On-Premises only ISI and Centralised IAI)

In this approach, the ISIs are completely distributed and each ISI collaborates with the others
for sharing data through a direct communication. The analytics services provided by the IAI
use the data stored on the local ISIs.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 18 of 89

3.4. Fully distributed: On-Premises ISI and IAI
In a fully distributed architecture, both the ISI and the IAI are deployed on-premises (see
below).

Figure 7: Fully distributed deployment model (On-Premises ISI and IAI)

The ISIs share data between themselves according to the established DSAs. The IAIs elaborate
the analytics services locally by using the shared data stored on the corresponding ISIs.
Differently from the others deployment models where the IAI is always centralised, in this case
the Virtual Data Lake used by the Legacy Analytics Engine is locally instantiated on each IAI.

3.5. Instantiation of the Architecture in the Pilots
In this section, we provide an overview of the deployment models that have been chosen by
each C3ISP Pilot in order to satisfy their stakeholders’ requirements as well as to implement
their use cases. Table 1 summarises the model chosen by each Pilot.
Table 1: Deployment models in the Pilots

 Hybrid Fully
centralised

ISP Pilot

CERT Pilot

Enterprise Pilot
SME Pilot

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 19 of 89

The following subsections are dedicated to describing these choices and how the C3ISP
architecture fulfils the Pilot requirements. More details about the deployment model adopted
by each Pilot as well as the integration of Pilot-specific components in the C3ISP Framework
can be found in D6.2 and in each pilot’s deliverables (D2.2, D3.2, D4.2 and D5.2).

3.5.1. ISP Pilot
The ISP Pilot is concerned with the sharing of cyber threat information (CTI) among the Italian
ISPs and the Registro.it (body responsible for managing Italy’s top-level domain names), in
order to mitigate possible attacks. Each ISP will use services, such as the list of malicious IPs,
provided by the Registro.it to perform security checks, and will produce security reports that
will later be shared with other ISPs via the C3ISP Framework. It is in each ISP’s interest that
they can define their own policies and determine in which form the data (i.e. security reports or
logs) can be shared, i.e. whether the data needs to be encrypted or anonymised beforehand in
order to protect sensitive information related to the ISP or its customers. An ISP can be seen as
an isolated entity with enough resources to deploy some of the C3ISP components locally.
Therefore, the hybrid deployment model is chosen in the ISP Pilot where each ISP will host a
local (on-premises) ISI and remotely communicate with the centralised ISI and IAI subsystems
hosted by a C3ISP service provider.

3.5.2. CERT Pilot
The CERT Pilot is concerned with fostering cyber threat information sharing between the
Italian CERT and other C3ISP stakeholders, in particular ISPs and Enterprises, with the aim of
preventing or timely reacting against security attacks. The CERT Pilot will adopt the hybrid
deployment model because its Prosumers, e.g. ISPs or large enterprises, may decide to sanitise
and cleanse their data prior to sharing it with the CERT, and thus need to deploy a local ISI.
Other C3ISP subsystems (remote ISI and IAI) will be centrally hosted at the CERT’s premises
to perform tasks such as collaborative data analysis, protected data storage and DSA policy
enforcement.

3.5.3. Enterprise Pilot
The Enterprise Pilot is concerned with providing a multi-tenanted managed security analytics
platform that would allow controlled sharing or pooling of cyber security data belonging to
different enterprise customers, without disclosing customer sensitive information. Since all the
data, which has previously been collected from remote enterprise premises, is stored centrally
at the Managed Security Service provider’s premises (i.e. on a multi-tenanted data lake), the
fully centralised model is chosen for the Pilot deployment. All relevant C3ISP components for
data sharing and analytics will be hosted within the Managed Security Service Providers
(MSSP)’s own platform and trusted domain (i.e. no external C3ISP provider). It is anticipated
that each enterprise customer (or MSSP analyst working on behalf of the customer) will be able
to define their own DSA policies using a DSA editor provided via the MSSP platform (i.e.
customer portal).

3.5.4. SME Pilot
The SME Pilot is concerned with providing a managed security service in the cloud
environment such as firewalls, intrusion detection/prevention systems, or anti-malware
analysis, to the SMEs and the collection and sharing of SME cyber security data with the C3ISP
service without disclosing privacy sensitive information. Participation of each SME in the
C3ISP eco-system needs to be done seamlessly with as little effort as possible, which means
that most of the required management and operational processes should be offloaded in order
to minimise the utilisation of SME resources (i.e. software and hardware). Therefore, the SME

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 20 of 89

Pilot envisages the use of a Pilot-specific application service, called C3ISP Gateway, which
should act as the middleware between the SMEs and C3ISP subsystems. The tasks for
collecting, processing and sharing the CTI are delegated to the C3ISP Gateway. While each
SME is still responsible for defining its own DSA policies, the policy enforcement should be
performed by the C3ISP. However, the SME Pilot has also identified requirements similar to
ISP and CERT Pilots where an SME wants to be able to sanitise and cleanse their data first
before sending it to the C3ISP platform. For the above-mentioned reasons the SME Pilot will
adopt the hybrid deployment model where local ISI may optionally be deployed in addition to
the remote ISI and IAI (hosted by a C3ISP provider).

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 21 of 89

4. Subsystem: ISI – Information Sharing Infrastructure
The Information Sharing Infrastructure (ISI) allows Prosumers to exchange CTI data under the
constraints specified in the DSA policies and acts as a storage of CTI data for access by analytics
services in a controlled manner.
The ISI is made up of the following components, described in details in the next sections:

• DSA Adapter: to enforce the rules written in the DSAs;

• Format Adapter: to accommodate for different necessities of data format and
conversion;

• Data Protected Object Storage: to securely persist the protected CTI data on a storage
area for further sharing and processing;

• ISI API: to manage the external communication with the others C3ISP subsystems.

Figure 8: Information Sharing Infrastructure
The ISI interacts with external clients:

• the Producer (or an application on behalf of it), which would use the ISI API to share
its data;

• the Information Analytics Infrastructure (IAI) that will request shared data for analytics
processing;

• the Common Security Services (CSS) for secure auditing of its activities, for identity
management and for key and encryption services.

We adopt here the sticky policy approach [67], to pair the Prosumer’s data with the DSA
policies: this means that the policies are firmly associated3 to a piece of data and the association
is not breakable. Whether the datum is processed or transmitted, the sticky policy must be

3 Whether it is the content of the policies themselves, references to policies which can be downloaded from a web
site or a DSA id to be retrieved from the DSA Manager is dictated by performance rather than security reasons
and can be considered an implementation decision.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 22 of 89

processed and never be dissociated. We use the term C3ISP Data Bundle to refer to the CTI
data and its paired DSA policies.
More precisely, the C3ISP Data Bundle (or bundle, for short) is an encrypted Data Protected
Object (DPO) container to preserve confidentiality and integrity. The bundles are managed by
the DSA Adapter component (with its Bundle Manager module), which is able to (i)
pack/unpack the CTI data in the container structure and (ii) enforce the DSA policies specified.
The next figure shows the C3ISP Data Bundle structure:

Figure 9: C3ISP Data Bundle

The bundle has an Header to provide identification and other bundle metadata (e.g., bundle
format, sizing, etc.). The Data Protected Object is encrypted and contains the CTI Data, the
DSA Policies and a signed Hash code to assure that the data has not been tampered with and
that it is paired with the correct DSA policies. It is worth noticing that the encryption
functionalities used to create the bundle are provided by the Key & Encryption Manager
component (part of the CSS subsystem, see 7.2).

4.1. DSA Adapter
The DSA Adapter is the component of the C3ISP architecture which is in charge of evaluating
the DSA paired with the CTI data and of enforcing it when the execution of some operation on
the data is requested (e.g. read). In particular, since the DSA consists of a Usage Control policy
(an enhancement to the traditional access control mechanisms, see Sect. 4.1.1), the DSA
Adapter retrieves the attributes required for the evaluation from the other components of the
architecture, evaluates the authorizations and conditions to decide whether the access can be

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 23 of 89

performed or not, and performs the resulting obligations4, which can even change the data itself
before being released to the requestor.
Figure 10 shows the modules the DSA Adapter, and the following of this section provides a
brief description of each module.

Figure 10: Components of the DSA Adapter

The DSA Adapter Front End is in charge of receiving incoming requests (from the ISI API)
and to return the related answer to the requestor. The DSA Adapter Front End delivers each
request it receives to the Event Handler, which is in charge of collecting and distributing the
messages, also called events, resulting from the phases of the decision process (i.e., the partial
results) among the other modules of the DSA Adapter. It allows other modules to register for
events, and it notifies them when such events occur. On the other hand, it accepts event
notifications from the other modules of DSA Adapter.
The DSA Adapter has three main sets of modules which implement its functionalities:

• Continuous Authorization Engine;

• Obligation Engine;

• Data Manipulation Operation (DMO) Engine.

The next subsections illustrates these modules.

4.1.1. Continuous Authorization Engine
The Continuous Authorization Engine (shown in Figure 11) is the engine which supports
traditional access control (i.e., the authorization process performed at request time) and
continuous access control (an enhanced feature introduced by the UCON model [64]). The
traditional access control phase (called preAuthorization in UCON) enforces the security policy
when the access request is received, in order to check whether the subject who requests the
access actually holds the right to perform the action on the object. The continuous authorization
phase (called onAuthorization in UCON), instead, checks that the right to perform the action
continuously holds during the execution of the action itself, in order to take a countermeasure
(such as interrupting or suspending the execution of the action) as soon as this right expires.

4 Obligations are rules defining which Prosumers are obliged to perform which actions on which data, under a set
of environmental conditions (see D 8.1 Sect. 3.1.1).

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 24 of 89

Figure 11: Continuous Authorisation Engine

The modules of the Continuous Authorization Engine are the following:
• Context Handler (CH) is the entry point of the Continuous Authorization Engine and

it manages the protocol for communicating with the Event Handler. This protocol which
regulates the interactions between the Event Handler and the CH is defined by a subset
of the usage control actions: tryaccess, permitaccess, denyaccess, revokeaccess, and
endaccess. The CH also coordinates the internal modules of the Continuous
Authorization Engine for the execution of the policy evaluation process, as described in
the remainder of this section;

• Session Manager (SM) is the components responsible for keeping track of the ongoing
usage sessions, i.e., of the access that are currently in progress, and it exploits an Access
Table (AT) to store the meta-data regarding these sessions. It is the key component of
the continuous authorization phase, and it represents an extension with respect to the
XACML reference architecture [64];

• Policy Decision Point (PDP) is the component which evaluates security policies and
produces the access decision. In C3ISP Framework the PDP evaluates standard
XACML policies because the usage control specific features are managed by the CH
and by the SM;

• Attribute Managers (AMs) are modules which manage attributes, allowing to retrieve
and to update their current values for running the policy evaluation process. AMs could
be local, i.e., they run on the same machine as the Continuous Authorization component
or remote, i.e., they could run on external servers that could be even located in other
domains run by third-parties;

• Policy Information Points (PIPs) are interfaces for interacting with Attribute Managers
in order to perform the following 3 main operations on attributes: retrieve,
subscribe/unsubscribe and update. In general, the attributes required for the evaluation
of a usage control policy are managed by distinct Attribute Managers, which require
different protocols for interacting with them, and which provide different
functionalities. For instance, some attributes are retrieved from other C3ISP
components, other attributes are directly managed by the Continuous Authorization
Engine component, while other attributes are managed by third organizations (e.g., an
LDAP system). Hence, PIPs mimic a plug-in architecture to let the Usage Control

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 25 of 89

service be as flexible as possible in interacting with distinct and different Attribute
Managers. In particular, the proposed architecture includes a set (chain) of PIPs which
provide the same interface to the CH (retrieve, subscribe/unsubscribe and update),
while each PIP implements the specific protocol to interact with a given Attribute
Manager and the specific algorithm to perform the requested operation and to provide
the required information. For instance, if the Attribute Manager of attribute A does not
support subscription, the PIP paired with A should implement the subscription
mechanism in order to provide the subscribe interface. This PIP could invoke
periodically the Attribute Manager to retrieve the updated value and compare it with the
previously collected value. If the new value is different from the previous one, the PIP
notifies the component which performed the subscription (i.e., the CH). The time
interval between two consecutive queries to the Attribute Manager is a configuration
parameter and is set according to the attribute to be monitored. More complex
techniques could be implemented. For instance, the previous PIP could exploit risk
based techniques to decide how much time it should wait before retrieving the next
attribute value from the Attribute Manager. The retrieve interface could be implemented
by simply forwarding the request to the Attribute Manager, or by exploiting more
complex techniques as well. For instance, the PIP implementation could return the
attribute value retrieved in a previous interaction instead of retrieving a fresh value form
the Attribute Manager if the risk that this value is changed is low. Moreover, the PIP
could also be configured to act as a local cache to reduce the operation execution time
when it is aware that the attribute value will not change for a while (e.g., when the PIP
itself requested to the related Attribute Manager to lock the attribute).

4.1.2. Obligation Engine
The Obligation Engine is a module that is responsible for the execution of specific operations
when certain conditions take place. Such operations are Usage Control Obligations that are
prescribed by the security policy (i.e. the sticky policy) associated to a specific data.
The structure of obligations can be described as follows:

• Usage Control Obligation = do Action when Trigger
Where Trigger is defined by:

• Trigger = Event AND Condition
Therefore, an obligation results in the execution of a particular action, when a specific event
occurs but only if a condition is verified.
Usage Control Obligations, therefore, may be defined by specifying the desired combination of
actions and triggers. An initial set of triggers and action is currently supported by the actual
implementation of the Obligation Engine, and through interactions with the Pilots’ owners, this
set may be extended and adapted as needed.
The following list of triggers is currently supported by the Obligation Engine. They are divided
in two sets: general and time-based triggers.
General triggers:

• TriggerDataAccessForPurpose: Event-based trigger that occurs each time a specific
data associated to the obligation is accessed for one of the specified purposes;

• TriggerDataDeleted: Event-based trigger that occurs when the piece of data associated
to the obligation is deleted;

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 26 of 89

• TriggerDataSent: Event-based trigger that occurs when the data associated to the
obligation is copied.

Time-based triggers:
• TriggerAtTime: Time-based trigger that occurs only once between start and

start+maxDelay parameters;
• TriggerPeriodic: Time-based trigger that occurs every arbitrary interval of time,

between start+maxDelay and end parameters.
The following list represents the supported actions at this stage:

• ActionDeleteData: This action deletes a specific piece of information;
• ActionNotifyProsumer: This action notifies the Prosumer when triggered;
• ActionLog: This action logs an event.

Internally, the Obligation Engine consists of a number of modules, as depicted in Figure 12:
• The Obligation Handler, in charge of processing (and persisting) the obligation

definitions coming from the policies;

• The Trigger Engine, which supports multiple types of triggers by implementing their
specific business logic;

• The Action Engine, that, similarly to the trigger engine, is responsible for materialising
the actions in obligations;

• The (Obligation) Event Handler, that interacts with the (DSA Adapter) Event Handler
to filter and process the events relevant to the Obligation Engine. In the following
diagram, the Obligation Event Handler is indicated as Event Handler for convenience.

Figure 12: Obligation Engine Block Diagram

What follows is a description of the more relevant methods of the Obligation Engine modules,
in order to provide a general overview of the internal dynamics.
First, the Obligation Handler has two operations, to add and to remove obligations. The
Obligation Handler persists the obligations in a database, for efficiency. If an obligation
includes a time-based trigger, the Obligation Handler calls the TimeBasedTriggerHandler.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 27 of 89

The TimeBasedTriggerHandler keeps a list of TimeBasedTriggers. When called, the
TimeBasedTriggerHandler instantiates a TimeBasedTrigger.
In order to implement their behaviour, all TimeBasedTriggers use a Java Timer5. When a
TimeBasedTrigger ticks, it fires the corresponding event by calling the Event Handler.
The Event Handler offers an interface to trigger any event. When an event is triggered for a
specific managed element, the Event Handler retrieves from the database the correct Obligation,
and then calls the Action Handler to perform the associated action. Moreover, the Event Handler
interacts with the Event Manager in order to route and pre-process any event of interest to the
Obligation Engine.
The Action Engine offers an interface which determines the correct action to perform according
to the specified Obligation.

4.1.3. DMO Engine
The Data Manipulation Operation (DMO) Engine is the component in charge of executing
the Data Manipulation Operation returned as a result of the decision process on the data and/or
by any obligation as prescribed by the DSA. In fact, besides determining whether the data can
be accessed or not by the requestor, the decision process also determines a set of operations that
must be executed on such data before being released to the requestor. As an example, a DSA
paired to a system log could require that all the IP addresses present in such log must be
anonymized before releasing this log to a third party. A similar action may be mandated also in
case a retention period for the log is expired, irrespective of any access request. The DMO
Engine is the component of the DSA Adapter devoted to perform such anonymization operation
on the log.
The architecture of the DMO Engine is plugin-based, in order to support an arbitrary number
of manipulation operations, and it is depicted in the following Figure 13:

Figure 13: DMO Engine Block Diagram

• The DMO Engine connects to the DSA Adapter Event Handler in order to collaborate
with the other components, e.g. with the Obligation Engine. The Event Handler
mediates requests to the DMO Engine about mandated operations required by a DSA;

5 Java Timer Class, http://docs.oracle.com/javase/8/docs/api/java/util/Timer.html

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 28 of 89

• The DMO Core is the component that interacts with the Event Handler on one hand,
and invokes the correct data manipulation operation component;

• The DMO Plugins realise the actual manipulation, once invoked by the DMO Core.
Plugins may be also external services, invoked as SaaS;

• The DMO Configuration stores the configuration of the DMO Engine; for example, it
keeps track of the available DMO Plugins.

As mentioned, the DMO Engine will implement a set of operations which will cover the
requirements of the C3ISP Pilots. In particular, we foresee at least the following list of DMOs:

• Anonymisation based on:

o Simple attribute suppression/replacement;

o Differential privacy techniques (e.g. to achieve geo-indistinguishability, see
Appendix 1);

• Symmetric homomorphic-friendly encryption, used to pre-process data for applying
homomorphic computations (see the transcryption process is 7.2.4.2).

4.1.4. Bundle Manager
The Bundle Manager is the module that handles the C3ISP Data Bundle, i.e., the container of
the data protected object (see the bundle structure described earlier in 4). It is used for both
packing and unpacking operations. In the packing phase, the Bundler Manager is used for
creating a bundle by (i) selecting a DSA and then (ii) pairing the DSA with the provided CTI
data. In the unpacking phase, instead, it is used to (i) extract the paired DSA from the bundle,
which will be sent to the DSA Event Handler for policy evaluation, and (ii) to retrieve the CTI
data (if allowed by the policies evaluation outcome).
As we described earlier, the C3ISP Data Bundle is planned to be a cryptographic container. For
this reason, during these packing/unpacking operations, the Bundle Manager interacts with the
Key and Encryption Manager to encrypt and sign the bundle at creation time, or decrypt and
verify it when reading or accessing. The simplest encryption schema will be to use a symmetric
encryption with a predefined key (per Pilot, since the C3ISP Framework is multi-tenant and
should be capable to support more than one Pilot over the same deployment). Other encryption
schemas could be available, e.g. to support the different trust boundaries of the Hybrid
deployment model (see 3.2) where we have a local ISI and a remote ISI, we could have different
encryption keys. Also, it could consider the usage of public key cryptography in other scenarios.
Another important capability of this module is the DSA selection at creation time. In fact when
a Prosumer provides a CTI data to the C3ISP Framework, s/he expects that it will be protected
by the policies he or she crafted in the DSA. There could be two different ways to address this
need. The first is the discretionary approach, in which the Prosumer provides the DSA to be
paired6 when submitting the CTI data. The second is the mandatory approach, in which the
Bundle Manager evaluates some logic to select the appropriate DSA directly from the DSA
Manager (e.g. by considering some Prosumers-provided metadata like its username or the type
of CTI data; by inspecting the content of the CTI data to infer the right DSA to use; etc.).

6 This could be either the full DSA policies document or a DSA identifier/URI that will be resolved by the Bundle
Manager at packing time.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 29 of 89

Since both the CTI data and the DSA policies are regular system files, the implementation can
opt to realise them, for example, in some sort of (signed) file archive format. As it will appear
clear from section 6, the DSA policies stored into the bundle are those that have been mapped
to the low level enforceable language (e.g. XACML) via the DSA Mapper component.
The Bundle Manager interacts with the Data Protection Object Storage (see 4.3) to store and
retrieve the bundles.
The next picture illustrates the modules of the Bundle Manager:

Figure 14 Bundle Manager in the DSA Adapter

The Bundle Packager is responsible for the packing/unpacking operations and interacts for
this with the Key and Encryption Manager. The DSA Selector finds out the DSA to fetch from
the DSA Manager that will be paired by the Bundle Packager. The DPOS Connector allows
the Bundle Manager to connect to the specific technology used by the Data Protected Object
Storage for storing and retrieving the protected objects (bundles).

4.2. Format Adapter
The C3ISP Framework is supposed to process data coming from different sources (Prosumers),
coming thus in different formats, carrying different metadata and not necessarily respecting any
standard for representation. In fact, we have already envisioned, also from the Pilot analysis,
that data to be analysed will include CTI data (e.g., network logs, database entries, antivirus
reports and emails). The Format Adapter is the component of the C3ISP Framework which
adapts the format of data to a standard format to be easily processed by the various C3ISP
components.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 30 of 89

Figure 15: Format Adapter internal structure

In particular, C3ISP is designed to operate with structured Cyber Threat Information (CTI)
represented in standard formats such as STIX, STIX 2.0 [2] or MISP7, which can be easily
parsed, imported as objects, have a powerful and expressive semantic, and give a user-friendly
representation of the threat and related information. Figure 15 describes the internal structure
of this module, representing the three logical operations that are performed to get structured
CTI, starting from raw data. In particular, the Format Extractor is the component that includes
the set of rules (heuristics) to automatically recognize the format of incoming raw data, in case
the format is not already given by the data provider. The Format Converter gets as input the
parsed data of the format extractor and converts it into a format which simplifies the data use
for analysis, according to a set of semantic rules specified for the data format recognised by the
Format Extractor. The converted data are then provided as input for the CTI Data Adapter,
which is a configurable component whose task is to put the data in a structured standard format
for CTI representation, such as STIX, STIX 2.0, MISP and other formats. The format selection
is performed at set up time by the service administrator, and is unique for that specific instance
of the C3ISP service. The standard CTI representation improves readability, also thanks to the
presence of tools to visualize the CTI content in a user-friendly way. Moreover, this standard
representation helps in defining a semantic for the represented pieces of information and their
relation. CTIs are then stored as data protected object, ready to be used for analysis. Not all
available algorithms for data analysis will be able to process structured CTIs, hence the CTI
Data Adapter will be used again to remove the standardized structure, getting ready the data for
analysis (as raw data).

4.3. Data Protected Object Storage
The Data Protected Object Storage (DPOS) persistently stores the CTI data provided by the
Prosumers in the form of the C3ISP data bundle, i.e. the CTI data and the corresponding DSA.
The DPOS could be implemented with an off-the-shelf object storage repository that allows
storing complex documents (i.e. the C3ISP bundle) with additional metadata useful to query or
retrieving them. Some examples of possible DPOS repositories include:

• Standard filesystem: it is a common filesystem that can be used as file storage; the
advantage of a standard filesystem is that the read, write, share and file operations are
fast and simple but the management of the metadata is not immediate (or if available,
not easily portable between different implementations or filesystems).

7 http://www.misp-project.org/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 31 of 89

• Amazon S3 Data Lake: it is an object storage that can be used for storing and analysing
Big Data, as Data Lake [52], hosting structured and unstructured data in a centralized
repository. The advantage is the possibility to store data having multiple data types “as-
is”, without converting them in a predefined format. This is delivered only as a service
by Amazon Web Services, Inc., so it cannot be installed on-premises.

• MongoDB [56]: it is a non-relational (No-SQL) document-oriented database [28]. It is
free and open source. The documents are stored in a JSON-like format [53]; that
simplifies the integration between different applications which share data as documents.
Ad hoc queries, indexing, and real time aggregation features are provided for querying
and analysing data.

• Apache Hadoop Distributed File System (HDFS) [54]: it is a distributed Java-based file
system for storing large volumes of data across multiple machines. It is usually used to
build Data Lake.

• OpenStack™ Swift [55]: it is the OpenStack™ module that implements an object storage
service providing APIs to its managing. Swift is ideal for storing unstructured data that
can grow without bound, so it is suitable for documents.

We plan to evaluate these solutions in particular considering that they should enable the runtime
execution of analytics services provided by the C3ISP Analytics Engine.

4.4. ISI API
The ISI API is the front-end component providing services to the C3ISP actors (Prosumers or
Prosumers applications, or the IAI subsystem). It orchestrates the processing flow with the other
ISI components, interacting with the DSA Adapter or the Format Adapter (see the data flow
diagrams in section 8). All the APIs are actions that are subject to the (DSA) policies associated
to each CTI data object.
The list of the operations of the ISI API conceived so far are:

• Create CTI: used to submit a raw CTI data that will be paired with a DSA to create the
C3ISP Data Bundle. In its simplest form, this operation can specify the DSA to be
applied (e.g. via its DSA identifier, see 6.4);

• Read CTI: used to retrieve in raw format a previously stored CTI data from the ISI
once the paired DSA policies have been met (e.g. access is permitted, a DMO for
anonymisation has been applied, etc.);

• Move CTI: used to move a C3ISP Data Bundle from an ISI node to another (e.g. in the
hybrid deployment model described in 3.2);

• Delete CTI: used to remove a CTI that have been previously stored (if DSA policies
allow that action).

• Prepare Data: used for preparing data for performing analytics service; it implies that
the CTI is retrieved (through the input CTI-Id) and formatted; the method returns a
reference to the prepared data.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 32 of 89

The basic signature of these API operations expects that the CTI data is provided as input at
creation stage (Create CTI), while a CTI identifier (CTI-Id) is returned that can be used to refer
to the stored CTI data in other operations (read, move, delete). At this stage, we do not plan an
update operation, which can be realised as a delete followed by a create: we think this makes
sense, since the CTI data is typically an object that is not to be modified after it has been created
at the source (e.g. a log file when produced does not need to be altered).
The Create CTI is also used to submit to the C3ISP Framework the result of the analytics service
run via the IAI subsystem. We specifically identify this variant because the DSA policies that
the DSA Manager will need to pair to the CTI result data might be different from those of the
CTI data used by the analytics service (see Policies for Derived Data concept in section 6).

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 33 of 89

5. Subsystem: IAI – Information Analytics Infrastructure
The Information Analytics Infrastructure (IAI) allows Prosumers to request the execution of
analytics services on the data protected and shared by the ISI. It supports both so called C3ISP-
aware analytics services, jobs that can exploits the full capabilities of the C3ISP Framework,
and so called legacy analytics service (i.e. already existent analytics), that can run on the shared
data but have limitations.
The IAI is made up of the following components, described in details in the next sections:

• C3ISP Analytics Engine: to run data analytics jobs that exploit the full power of the
C3ISP Framework;

• Service Usage Control Adapter: to protect the Prosumers’ usage of the analytics
services;

• Legacy Analytics Engine: to provide the interface for using a legacy analytics engine;

• Virtual Data Lake: to implement a “transient” or “per-call” data lake used for analytics
processing by the legacy engine;

• IAI API: to provide the interfaces for external interaction with the Prosumers (or their
applications) and other C3ISP subsystems.

Figure 16: Information Analytics Infrastructure
The IAI interacts with external clients:

• the Consumer (or an application on behalf of it), which would use the IAI API to execute
analytics jobs on the data shared through the ISI;

• the Information Sharing Infrastructure (ISI) to request the data for processing, subject
to DSA policies;

• the Common Security Services (CSS) for secure auditing of its activities and for identity
management.

5.1. C3ISP Analytics Engine
The C3ISP Analytics Engine is a set of methods and tools offered by the C3ISP Framework
to extract additional knowledge from information shared by Prosumers. The offered analysis

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 34 of 89

tools include computational intelligence functions, in particular clustering and classification
algorithms, data aggregation and correlation functions, statistical analysis tools, and data
visualization primitives. These functions are either implemented through open source libraries
for Machine Learning (ML) and statistical analysis, in particular WEKA8 and Scikit-Learn9
libraries, and tools for Big Data analysis mainly derived from the Apache Hadoop10 software
suite, such as Spark11, Flink12 and Mahout13, or internally implemented by project partners (e.g.
homomorphic encryption, see 5.1.1 and 7.2.4.1), either as output of research activities in data
analysis, or as a commercial product.

Figure 17: C3ISP Analytics Engine

The infrastructure depicted in Figure 17 relies on a core of Analysis Tools and on three
functional modules to handle the data flow in the engine. The Format Adapter Interface, is
an interface to the Format Adapter component (via the ISI API) already described in the
previous section, which will prepare the format of information, from the structured CTI format,
to the one needed by the required analysis algorithm. The Data Lake Buffer is a temporary
storage in which pieces of information used for analysis are stored. The specific structure for
storage in the buffer will depend on the specific analysis to be performed, i.e. it could be a
simple data buffer to store temporarily the actual parameter of the analysis function, or it can
embody a structured or unstructured database for big data storage, to be used as buffer for the
map-reduce operations. The Result Buffer will contain temporary and final results, acting thus
both as a complimentary component to the Data Lake Buffer, and to store the final results before
they are sent to the ISI via the Format Adapter Interface.
The Analysis Tools are divided in the aforementioned sets:

• Machine Learning & Statistical Analytics;

• Big Data Analytics;

8 http://www.cs.waikato.ac.nz/ml/weka/
9 http://scikit-learn.org/stable/
10 http://hadoop.apache.org/
11 https://spark.apache.org/
12 https://flink.apache.org/
13 http://mahout.apache.org/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 35 of 89

• FHE Analytics (see 5.1.1);

• Visual Analytics (see 5.1.2).

All the analytics functions considered are compatible with the Data Manipulation Operation
described in the ISI and their analysis is completely under the control of the C3ISP Framework.

5.1.1. FHE Analytics
The FHE Analytics module is in charge of performing homomorphic computation functions
(HE computation or FHE analytics – for short) on homomorphic encrypted data (more in this
section). The homomorphic encryption process is handled by the Key & Encryption Manager
component services, detailed in 7.2, so please refer there for all the details, in particular the
FHE Analytics uses the Homomorphic Encryption with Transcryption process. The high-level
process is following:

• A Prosumer submits a CTI data to the ISI;

• Before being persisted in the DPOS, a specific DMO14 is executed on the CTI data (as
prescribed by the DSA policies, which “knowns” that the data needs to be prepared for
an HE computation) – the DMO is a specific symmetric encryption that is
homomorphic-friendly (see for example Kreyvium in 7.2.4.2). This DMO retrieves the
required cryptographic key (called evaluation key, a public data, see 7.2.4.2) from the
Key and Encryption Manager;

• A Prosumer asks IAI for a FHE analytics service on the CTI data;

• The C3ISP Analytics Engine retrieves the CTI data via the Format Adapter Interface
and passed it to the FHE Analytics;

• The FHE Analytics interacts15 with the Key and Encryption Manager (FHE K&M
Manager, in particular) to perform the transcryption process that transform the CTI data
from the symmetric homomorphic-friendly encryption to homomorphic encrypted data;

• The FHE Analytics runs the HE computation over the homomorphic encrypted data
producing an encrypted result (for this it needs the same evaluation key from the Key
and Encryption Manager), which is finally sent to the ISI for being persisted as a new
CTI data (via the Create CTI ISI API);

• Finally, a Prosumer retrieves the result (via the Read CTI ISI API). Since the result is
encrypted, the Prosumer either needs to get the secret key from the Key and Encryption
Manager, or s/he could receive the CTI data already in the clear (thanks to a variant of
the Read CTI which decrypts on-the-fly on the C3ISP Framework-side). Both options
will be evaluated.

14 While FHE Analytics will be agnostic with respect to the C3ISP Deployment Model, we think that the common
scenario will be to use this DMO for HE computation on hybrid models, where this DMO will be executed locally
on the Prosumers premises to assure the maximum level of confidentiality.
15 As it will be clear later, homomorphic encryption is a resource intensive process, in particular of disk space: for
this reason, the FHE Analytics and the Key and Encryption Manager should be co-located in the C3ISP deployment
model, to avoid huge data transfers.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 36 of 89

The diagram in Figure 18 shows the FHE Analytics and the ISI (specifically via the ISI API)
and the Key and Encryption Manager (specifically the FHE K&E Manager via the K&E Core).

Figure 18: Analytics service with FHE Analytics

The benefit of homomorphic encryption is to permit analytics on encrypted data and to preserve
data privacy at the same time. To achieve this, the encrypted data is not decrypted during the
analytics operations. Moreover, the result of analytics with homomorphic encryption is still
encrypted. In the C3ISP project and due to Pilots requirements, we propose FHE analytics
services on two data types:

• IPv4 addresses;

• ASCII strings.

We will implement different FHE analytics services which will allow the following
operations:

• Testing if two encrypted IPv4s are equal or not;

• Testing if an encrypted IPv4 belongs to a list of encrypted IPv4s (e.g. to check if the IP
is in a list of malicious IPs);

• Computing the intersection of two lists of encrypted IPv4s;

• Computing the number of occurrences of an encrypted IPv4 in an encrypted list;

• Testing if an encrypted string belongs to a list of encrypted strings, where all strings
have the same length;

• Testing if the maxlen first letters of an encrypted string belongs to a list of encrypted
strings, where strings can have variable length and where maxlen is a parameter of
integer type (e.g. to check if a hostname is in a list malicious hostname, if a username
is in a list of sensitive accounts, etc.).

The analytics operations will be performed with Cingulata (originally Armadillo [11]), a tool
from CEA. HE computation services on (homomorphic) ciphertexts, including the FHE
analytics services proposed above, can all be decomposed on the elementary operations of
homomorphic additions and homomorphic multiplications (can be performed with Cingulata
tool) over the input bits of data. How this works is explained in Appendix 2: Homomorphic
Computation.

5.1.2. Interactive 3D Visualisation
In addition, C3ISP provides a 3D visualisation pipeline that is able to display Internet
connections based on IP address geolocations and thus point out the sources of potential attacks

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 37 of 89

and the amount of traffic generated. Using snapshots of data from the Data Lake retrieved via
e.g. a Hadoop connection, the visualisation platform generates geographical information
systems (GIS) visualisation in 3D whereby the start and end point of connections denote the
origin and destination of internet traffic retrieved by the system. Visualising such information
in 3D over a world map provides better overview of large amounts of data since further any two
points in geospace are, the larger the arc becomes. This offers a distinct advantage over plain
2D visualisation as many connections over time tend to clutter the view making such a system
unusable, see Figure 19 for an example. Furthermore, using the online platform of 3D Repo, it
is possible to gain access to such 3D visualisations directly in web browsers in 3D without the
need to install any additional software. The same visualisation can also be displayed in Virtual
Reality for simplified navigation and full immersion. Individual layers of data traffic can be
switched on and off so that flows can be isolated and examined in more detail. Specific colour-
coding further designates data traffic that fulfils certain criteria coming from the Analytics
Engine, such as a common origin, matching connection signature, etc. All such data is then
stored in a MongoDB [56] and pre-processed for fast web-based visualisation using the
Unity3D [58] game engine.

Figure 19: Mock-up data analytics visualisation in 3D

5.2. Service Usage Control Adapter
The Service Usage Control Adapter is the component of the C3ISP architecture devoted to
protecting the services offered by the IAI (described in the following section 5.5) from
unauthorized accesses and usage. This adapter, similarly to the DSA Adapter previously
described (Sect. 4.1), implements a Usage Control engine, thus being able to perform traditional
access control along with continuous authorisation and obligation enforcement, which
characterise the Usage Control model. Hence, the Usage Control policies enforced by this
component define, for each of the services offered by the IAI, who can perform which analytics
operations under which conditions, and whether these operations can be carried on over time.
In this case, differently from DSA which is defined by who shares the data and it is paired with
the data itself, the Usage Control policy is defined by the entity which provides the service, and
it is paired with the service to be protected. For instance, since the homomorphic encryption
based services are very resource-intensive, the provider of such a service could define a Usage

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 38 of 89

Control policy which states that only two requests can be served at the same time. When the
third request is received, the Usage Control policy checks the priority assigned to the incoming
request against the priorities of the previous two (which are running) and if the former is greater,
the running request with lower priority will be suspended to serve the third request. The
suspended request will be resumed as soon as one of the other request will have been served.
The architecture of the Service Usage Control Adapter is the same as the architecture of the
DSA Adapter (shown in Figure 10), since both Adapters enforce Usage Control policies
expressed exploiting the same executable language. The differences between the DSA Adapter
and the Service Usage Control Adapter are that in the latter some modules are not used (DMO
Engine and Bundle Manager) and the DSA Adapter Front End is re-configured in a Service
Usage Control Adapter Front End with an embedded Policy Store (PS). The PS keeps the usage
control policies for the analytics services.

Figure 20 Service Usage Control Adapter

5.3. Interface to Legacy Analytics Engines
Legacy Analytics Engine such as the SATURN Visual Analytics tool (see D8.1 for details) is
integrated as standalone web-application into the C3ISP reference architecture and accessible
via user’s web browser. The engine exposes interfaces to the following two C3ISP components:

• IAI API;

• Virtual Data Lake (VDL).

The interface to IAI API allows the invocation of legacy analytics service as well as
provisioning of its result. It is assumed that a legacy analytics engine will provide its own
graphical user interface, and thus its service consumption consists of sending an HTTP request
to a specified location (URL) and receiving an HTTP response from that location (i.e. HTML
page). Depending on the type of HTTP method used in the request, i.e. GET- or POST-method,
additional parameters will be included in the HTTP request header or the message body. Legacy
analytics engine may have its own authentication and authorisation component for restricting
access to authorised users (consumers) as well as to data and features according to users’ group
and/or role. There may be an opportunity to integrate this component with C3ISP-own

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 39 of 89

authentication framework in order to allow single sign-on to the legacy analytics engine. In this
case, some user identity information and a valid session or authentication token will be provided
as parameters when invoking the service via IAI API and another interface between legacy
analytics engine and C3ISP authentication component (included in C3ISP Identity Manager,
part of the CSS C3ISP subsystem) will be established to validate the corresponding token. If no
single sign-on is implemented the consumer’s service request would be redirected to the legacy
analytics engine’s own authentication page and the authentication/authorisation process will be
carried out irrespective of C3ISP’s own authentication framework; the authentication database
of both systems (i.e. user IDs) need to be synchronised accordingly in order to ensure that each
consumer can only access data available to them. The authentication may only be performed
once when a consumer invokes the legacy service for the first time during a C3ISP session and
may last until the consumer logs out from C3ISP system or after specified timeout.
The interface to Virtual Data Lake (VDL) allows the legacy analytics engine access the data
that has been shared through the ISI and processed by other C3ISP components such as C3ISP
analytics engine or data manipulation operation engine according to the DSA rules for particular
consumer. Basically, the legacy analytics engine needs to define a data source connection to a
VDL instance that was created upon consumer’s request. Depending on the configuration
options of the legacy analytics engine such connection setup may need to be permanent or pre-
configured for each consumer or group/role, while at the same time the availability, type and
amount of data accessible via the VDL instance may change each time a consumer submits a
new analytics function request. The connection setup usually consists of the following
parameters: data source type and name, IP address, port number, access credentials and data
query information.

5.4. Virtual Data Lake
The Virtual Data Lake (VDL) is a dedicated service instance for storing CTI data in raw
format to be consumed by a Legacy Analytics Engine. Since legacy analytics engines are not
expected to support DSA enforcement on shared CTI data, any data accessible via the VDL
instance must have already been prepared and pre-processed by appropriate C3ISP components
(i.e. DSA Adapter and Format Adapter) according to the DSA rules and usage constraints (e.g.
data sanitisation). This means that part of the data may be anonymised (thanks to DMOs
specified in the DSA) or they are accessible only to particular groups or roles of consumers for
limited period of time (thanks to a DSA policy rule). Hence the existence of a VDL instance as
well as the contained data is still controlled by the DSA rules enforced by the ISI subsystem.
Whenever the CTI data is processed and transferred to the VDL, the data on the DPOS should
be flagged as tainted, because it has been used outside the control of the C3ISP Framework
(and the taint flag could be used to defined specific DSA policies on such data, if needed).
The VDL will provide a standard SQL-like interface for querying the data to be used by the
Legacy Analytics Engine (see 5.3). The following systems may be used for implementing the
VDL:

• Relational Database Management System (RDBMS): this comprises conventional
database systems such as Oracle [74], MySQL [73], or PostgreSQL [68], which mainly
employ SQL as their query language. The VDL can be instantiated as a table view to
represent a subset of the sanitized data contained in the database which has been made
available by C3ISP to specific requesting Prosumer;

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 40 of 89

• Apache Hadoop Distributed File System (HDFS): this is a scalable Java-based file
system that can be used to store huge amount of data on a cluster of servers. A VDL
instance may be implemented as an HDFS folder which contains the sanitized data for
specific Prosumers. The SQL-like interface to query the data (e.g. log files inside the
HDFS folder) will be provided through off-the-shelf tools like Apache Hive [62] or
Cloudera Impala [63].

The choice of which system to use mainly depends on the available resources (e.g. hardware,
software, technical expertise) as well as on the amount of data to be stored. Given that the
HDFS-based solution may require more effort to implement, it may suit better in a large-scale
C3ISP deployment with high number of Prosumers interacting with the legacy analytics engine.
We will take this into account when implementing the C3ISP (Pilot) testbed.

5.5. IAI API
The IAI API is the C3ISP front-end for interacting with the analytics services engines (both
C3ISP-aware and legacy/already existing analytics services). It exposes methods for invoking
analytics services on a CTI data (or multiple CTIs) shared and provided by the Prosumer(s).
For this reason, the API includes:

• A method for invoking an analytics service (runAnalyticsService), which will receive
as input the service analytics name (in the form of a unique identifier) and the CTI
identifier (CTI-Id) to be involved in the analytics. The analytics name is an identifier
specifying an analytics service available in the analytics engine;

• A method for processing multiple CTIs, i.e. two or more CTIs can be involved as input
to an analytics service. The method is analogous to the previous one, but it receives as
input a list of CTI-Id.

In the latter scenario, we assume that the DSA associated to each CTI is the same: this is the
reasonable scenario where several Prosumers share CTI data, by using their agreed DSA, and
that want to perform analytics on them.
Depending on the kind of analytics service, the IAI API will be in charge of triggering the
creation of the VDL (for the Legacy Analytics Service), by performing the required operations
against the ISI (e.g. Read CTI) to feed the VDL instance. We also foresee the possibility of
having a specific API (or a specific analytics service) that will create the VDL instance without
specifically running an analytics job (i.e. a void analytics service): this will be used by a Legacy
Analytics Engine that will need to interact directly with the sanitised data, e.g. for visualisation
purposes where it has to navigate or drill down into the data in a dynamic way.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 41 of 89

6. Subsystem: DSA Manager
As explained in the D7.1, C3ISP Framework uses Data Sharing Agreements (DSAs) for
regulating information exchange across it, or rather data sharing policies encoded in the DSA
regulate the communication between Prosumers.
The DSA Manager is an autonomous subsystem of the C3ISP Framework appointed to provide
services for the definition of policies in the DSAs, creation, storage and management of DSAs
to the Prosumers.
The DSA Manager is made up of the following components, described in details in the next
sections:

• DSA Editor: to write the sharing rules that can be understood by humans;

• DSA Mapper: to translate the sharing rules to an enforceable language that can be
processed by a machine;

• DSA Store: to persist the DSAs on a storage area;

• DSA API: to manage the DSAs from the other subsystems.

Figure 21: DSA Manager

The DSA Manager interacts with external clients:
• the Prosumer, which would use the services exposed by the DSA Editor;

• the Information Sharing Infrastructure (ISI) that needs to use the DSA API for
supporting the data sharing among the Prosumers using the C3ISP Framework;

• the Common Security Services (CSS) for secure auditing of its activities and for identity
management.

6.1. DSA Editor
The DSA Editor is responsible for orchestrating the communication between the other
components of the DSA Manager. It is provided as a web application and supports the DSA
life-cycle, from its inception and updates (through the DSA Editor), to its termination, as
explained in D8.1, section 3.1.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 42 of 89

The DSA Editor allows authoring DSAs and supports the Prosumers in the definition of data
sharing policies. The DSA Editor provides a refinement process to create and manipulate the
DSA: it allows the user to define an “abstract” and generic version of the DSA, called DSA
Template, where only a reusable set of fields and rules are written. An “instance” of the DSA
Template must be defined in order to obtain a DSA that can be used. DSA Template acts as a
starting point for creating use case specific DSAs, in which all fields and rules are fully
specified. More concretely, a DSA Template is like a generic contract that might be used by
some parties to define the sharing rules in a specific context (e.g. a regulated marketplace)
without starting from scratch: it is however evident that the parties could have specific
necessities that are not part of the template and which shall be specifically written in the final
DSA (i.e. the DSA instance).
Templates can build a catalogue of DSAs created for certain contexts and needs that can be
used for defining a DSA without starting with a blank page.
The DSA is formalised in an XML (Extensible Mark-up Language) file format. The structure
has the following main sections, which will be extended to accommodate the C3ISP Framework
needs (e.g. to manage CTI data and the Prosumer network):

• The metadata: a unique identifier, a title, the data classification of the information
protected by the DSA, the purpose of the agreement, the temporal validity of the DSA;

• The policies which express rules about authorizations, obligations and prohibitions;
they are encoded in a Controlled Natural Language (CNL) [26], based on predefined
dictionaries that are use case specific;

• Additional data for describing (in a free-text format) the content of the DSA or to add
notes.

The DSA Editor supports the user in the definition of the policies, which represent the core of
the DSA; the DSA Editor suggests the user only the possible terms and actions in an interactive
and dynamic process during the definition of the policies. This feature leverages on a dictionary
(also called vocabulary), based on an ontology defined in OWL (Ontology Web Language)
[27], which describes the domain in which the DSA will be applied (it means that the dictionary
could be Pilot-specific and the ontology shapes terms and actions of a specific context) and, in
particular, the actions supported by the C3ISP Framework including data sharing, data
manipulation operations (DMOs) and analytics functionalities. The user can define policies
on data shared/provided by the Producers to the C3ISP Framework and also policies on derived
data, that is on the CTI data resulting from running the analytics service on such shared data.
We plan to define dictionaries for all the C3ISP Pilots.
The application supports different roles for creating DSA Templates and DSAs, and the layout
of the graphical web interface changes according to a role-based authorisation mechanism
where, for example, some fields cannot be changed when a DSA is instantiated from a template.
The role-based model will be extended to support C3ISP security requirements (see D7.1,
2.2.1).

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 43 of 89

The following picture summarises the steps just described to support the DSA authoring
process:

Figure 22: DSA Editor Process

Once the policies are authored by the Prosumer and the DSA is finalised, the rules encoded in
CNL (wrapped in the DSA xml file format cited above) are ready to be submitted to the DSA
Mapper for translating the CNL statements in a low-level language suitable for enforcing them
on the C3ISP Framework. This integration shall occur using web services technology (e.g.
RESTful calls).
The DSA Editor also interacts with the DSA Store, the repository used to persist the DSAs
(templates and instances).

6.2. DSA Mapper
The DSA Mapper is responsible for translating the DSA policies from the Controlled Natural
Language (CNL) employed by the DSA Editor into a low level directly enforceable policy
language (XACML). It is called by the DSA Editor to translate the DSA policy before the DSA
will be stored in the DSA Store.
The DSA Mapper functionalities and how they work are described in D8.1, Section 3.2. The
next figure shows its modules:

Figure 23: DSA Mapper

In a nutshell, the output of the mapper function is done in two-steps:

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 44 of 89

1. First, the DSA XML file is enhanced with the enforcement language specification of
each rule composing the DSA (however this is not yet enforceable since it is not well
formed and completed);

2. Second, the mapper builds a fully enforceable policy with all the constructs that were
not added in step 1 (complete of both access control and usage control rules, as well as
pre- and post-obligations) starting from a mapped DSA.

The DSA Mapper is internally called by the DSA Editor to translate a DSA policy from
Controlled Natural Language to the enforcement language (XACML), before the DSA will be
stored in the DSA Store.
Further, a “BuildENFPolicy” functionality (where “ENF” stand for “enforceable”) is provided
to extract the enforceable part from the DSA when needed (i.e. when required through the DSA
API via the “Fetch enforceable policies from the DSA”, see 6.4). This functionality is in charge
of:

• Parsing the DSA XML file, retrieved from the DSA Store (via the DSA API), to:

• Check the state of the DSA. In particular, if the DSA is not mapped yet, then the
function halts. Otherwise the BuildENFPolicy starts the building procedure.

• Isolate and extract the XACML rules from the DSA and save them separately.

• Building the enforceable policy skeleton, that represents the fix part of the enforceable
policy. It is made of:

• The header of the policy comprehensive of the syntactical details, including, for
instance, the namespace, the combining algorithm, and so on;

• Three specific tags for the description, the DSA identifier and the XACML
policy Target.

• A default deny rule to implement the default behaviour if no rule is matched.

• Including the rules derived from the DSA. Note that rules are inserted into the
enforceable policy in a specific way: authorizations and prohibitions go first and then
all the obligations. Obligation rules are built as rule that are PERMIT by default.

The DSA Mapper is provided as a Web Service of the DSA Manager subsystem. The current
version implements APIs by exposing RESTful endpoints.

6.3. DSA Store
The DSA Store is a database where the DSAs are stored and consumed by the other components
of the DSA Manager. Since it will contain documents (DSA are XML files), we are evaluating
the use of a document-oriented database [28] (i.e. NoSQL database), in particular XML
Databases which are optimised for storing, querying and managing XML documents.
The DSA Store will also be exposed, through the DSA API (see next), to the ISI subsystem to
retrieve the appropriate DSA for the CTI data to be shared and protected at C3ISP Framework
operation time.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 45 of 89

6.4. DSA API
The DSA API is the external interface of the DSA Manager subsystem. It provides functions
for managing the DSAs. The DSA API is used by the ISI for interacting with the DSA Manager
when it needs to retrieve DSAs or by the DSA Editor when it needs to create or update DSAs.
At this stage, we foresee the following interfaces:

• Create DSA: used to persist a DSA in the DSA Store. The API shall return a unique
DSA identifier;

• Retrieve DSA: used to retrieve a DSA, e.g. by its identifier, by its status, by other
properties;

• Retrieve the status of a DSA (see DSA status in section 3.1 of D8.1);

• Update DSA: used to modify the content of an already existent DSA, by its identifier;

• Delete DSA: used to delete a DSA, by its identifier;

• Add/Update enforceable policies in a DSA, given the DSA identifier: used to add and
update enforceable policies (i.e. the policies created at the DSA Mapper level, see
section 6.2) contained in a DSA;

• Fetch enforceable policies from the DSA, given the DSA identifier: used to extract
enforceable policies from a DSA;

• Delete enforceable policies from a DSA, given the DSA identifier: used to delete
enforceable policies from a DSA;

• Check DSA Validity: used to verify if the DSA is in a valid state (e.g. not expired, etc.
See section 8.1 and D8.1);

• Revoke a DSA: as explained in the D8.1 section 3.1, the DSA can be revoked for certain
reasons (e.g. the parties involved in the agreement decide that it is no longer valid), so
it should be possible to revoke a DSA given its identifier.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 46 of 89

7. Subsystem: CSS – Common Security Services
The C3ISP architecture requires some common services to be available to all the subsystems
and their components in order to satisfy security requirements. These services provide a
standard interface to the clients’ components who want to use them. The following sections
describe the subsystems suppling these services.
The CSS subsystem is made up of the following components, described in details in the next
sections:

• Identity Manager: to provide identification, authentication services, users attributes for
policy evaluation;

• Key and Encryption Manager: to manage cryptographic keys and encryption services,
including functionalities for homomorphic encryption;

• Secure Audit Manager: to allow secure storage of events occurring during the C3ISP
Framework operational activities.

Figure 24: Common Security Services

The CSS interacts with external clients:
• the DSA Manager, for identification and auditing purposes;

• the Information Sharing Infrastructure for identity-related purposes, key and encryption
services and auditing;

• the Information Analytics Infrastructure for identity-related purposes and auditing.

7.1. Identity Manager
The Identity Manager aims at identifying entities and storing authorization information within
C3ISP. Entities are identified with the use of credentials that after verification allow or deny

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 47 of 89

that entity to access the requested service. The basic-authentication system is the simplest
technique to authenticate entities and it is composed of a username, which it is a public
parameter, and a password (a secret), which must be known by the entity (client), which wants
to be authenticated and another entity (server), which wants to verify the password and in case
provide a service.
A more advanced authentication system is the Strong-Authentication, which adds to the basic
authentication an additional parameter called One Time Password (OTP) [59]. An OTP is a
secret that in freshly generated by an OTP-generator, and it is valid only once for a specific
time-window. The OTP is generated by the client, which wants to be authenticated, and the
server, which wants to verify the OTP generated. Both the client and the server use a common
seed to generate the fresh OTP, like for instance the timestamp.
Other versions of Strong-Authentication use other channels to exchange the secret. For instance,
it is possible to use the mobile telephone number of the client to receive a secret sent by the
server that must be inserted during the authentication procedure. A variant of this protocol uses
the email of the client to send the secret and then it verifies in the same way during the
authentication phase.
Within C3ISP Framework, we envision a single Identity Manager which is able to verify
credentials of identities that access different services also for different purposes. For instance,
in the ISP Pilot a Prosumer must be authenticated to interact with the DSA Manager to create
and manage DSAs. Also, interactions with the ISI and IAI may require an authentication step
before proceeding with the services (see also API protection is section 2.1).
The Identity Manager will be also in charge of serving functionalities related to the
authorisation phase. So, the DSA Adapter may query the Identity Manager to retrieve
information for a specified entity, and use this information to enforce the action attempted by
that entity.
There exist several standard for the authentication process, and we cite:

• LDAP [60] and LDAPS [70]: as defined by Microsoft, the “Lightweight Directory
Access Protocol (LDAP) is a directory service protocol that runs on a layer above the
TCP/IP stack. It provides a mechanism used to connect to, search, and modify Internet
directories. The LDAP directory service is based on a client-server model. The function
of LDAP is to enable access to an existing directory”. Thanks to its structure of
directories, LDAP can provide operation for users’ authentication and authorization. In
fact, LDAP stores additional information about a user that can be retrieved during the
authorization phases. Moreover, LDAP provides operations needed to interact with the
directory-server database. Example of operations are: add, which creates a new entity
in the database, and modify that changes some parameters of a particular entity. For
authentication, a special bind operation is provided. The C3ISP Development and Test
Bed environments provide an LDAP service that could be used for such purposes as
well (see 10.1.2). Since the LDAP communication between clients and server is not
encrypted, the transferred data are not protected (even if a client authentication has
required to establish a connection with the LDAP server), LDAPS (LDAP over Secure
Socket Layer) is recommended for securing the exchange of data over the LDAP since
the data exchanged are encrypted by different cipher suites supported by the TLS
(Transportation Layer Security) protocol [69].

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 48 of 89

• OAuth2 [57]: it is an open standard to authorization. It provides client applications a
“secure delegated access” to server resources on behalf of a resource owner. It specifies
a process for resource owners to authorize third-party access to their server resources
without sharing their credentials. This is obtained through the use of single token that
are released for a specific set of authorisations requested by the entity that wants to
provide the service. However, the token is released only after a correct authentication
of the resource-owner or end-user. Nowadays, OAuth is often used by websites that
wish to provide access to their services using users’ credentials on well-known providers
such as Google, Facebook or Twitter.

• OpenID [61]: it is an open standard and decentralized protocol by the non-profit
OpenID Foundation that allows users to be authenticated by certain co-operating sites
(known as Relying Parties or RP) using a third-party service. In this way, the entity,
which is charge of managing the authentication system, does not need to build up an ad
hoc system. So, users can log into multiple unrelated websites without having to create
single account with their information over and over again. Basically, users create a
single OpenID account and then use those accounts to sign onto any website which
accepts OpenID authentication. The OpenID standard provides a framework for
communications that must take place between the identity provider and the OpenID
acceptor (the “relying party”). The OpenID protocol does not rely on a central authority
to authenticate a user’s identity.

7.2. Key and Encryption Manager
Key and Encryption Manager is responsible for key management and encryption services
needed for ensuring the confidentiality of the shared data across the C3ISP architecture
components. In fact, the C3ISP data bundle, described in 4.1, is a cryptographic container built
using these services, whereas Homomorphic Encryption is a technique used to preserve
confidentiality even during computational services (more later).
This component leverages cryptography techniques which include solutions to encrypt data, a
mechanism that can be used to protect user’s privacy and confidentiality in general. The
encryption is a cryptographic process to transform a message or plaintext into a ciphertext using
a certain algorithm based on an encryption scheme. The process is reversible: the obtained
ciphertext can be transformed into plaintext if decrypted, knowing the key used in the
encryption scheme. In fact, in cryptography, encryption and decryption processes use
mathematic objects called keys.
There are two kinds of cryptography concepts that we will cite and describe in the next sections:

1. Symmetric cryptography (also called secret-key cryptography);
2. Asymmetric cryptography (also called public-key cryptography).

Public key cryptography is often used in key management (for instance to distribute secret keys)
and private key cryptography is employed for encryption since it is computationally more
efficient.
In this section, we propose a design for the Key and Encryption Manager component (K&E
Manager for short). K&E Manager secures, stores, and tightly controls access to tokens,
passwords, certificates, API keys, and encryption services. K&E Manager handles key

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 49 of 89

revocation, key rolling, and auditing (by integrating with the Secure Audit Manager, see 7.3) to
trace any request towards the K&E Manager modules. Through a unified API, the other C3ISP
subsystems can access an encrypted Key/Value store and network encryption-as-a-service to
generate secrets. To address the C3ISP architecture protection needs, we specialise the K&E
Manager into two main concrete modules namely Data Protected Object (DPO) – Key &
Encryption Manager and Full Homomorphic Encryption (FHE) – Key & Encryption Manager:

• DPO – Key & Encryption Manager will provide services for Key management and
Encryption tools. This module is dedicated to securing the C3ISP data bundle (see the
Bundle Manager description in 4.1.4). Effectively, it provides a management for secret
keys with respect to symmetric-key technologies and encrypt it using the Data Protected
Object (DPO, i.e. the union of the CTI Data with the DSA Policies), thus allowing the
Bundle Manager to form the C3ISP data bundle.

• FHE – Key & Encryption Manager will offer services for FHE keys management,
including public & private key, evaluation key, and transcryption key (also called trans-
ciphering key, more next). Evaluation key corresponds to the algorithm by which the
data will be processed (it is a FHE specific object and it is described next).

With respect to the C3ISP high-level architecture defined in Figure 2, the Key & Encryption
Manager interacts with the C3ISP subsystems and components as in the following figure:

Figure 25: Key & Encryption Manager architecture

7.2.1. K&E Core
K&E Core is the centre of services of K&E Manager which allows dispatching the requests
from the ISI (specifically the Bundle Packager or the DMO Plugin for transcrypting
preparation) and from the IAI (specifically the FHE Analytics). At high-level, the K&E Core
exposes APIs for retrieving keys or invoking encryption services. It also provides API
protection (i.e. a security layer to protect these APIs).

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 50 of 89

There are three scenarios where the ISI and IAI interacts with the K&E Manager via the K&E
Core:

• The first one is the request from the Bundle Manager to encrypt the C3ISP data bundle,
at CTI creation time;

• The second one is the request from the DMO Engine for retrieving the key (a public
data, see evaluation key in 7.2.4.2) used to encrypted the CTI data with an
homomorphic-friendly symmetric encryption algorithm;

• The final one is the request for HE computation from the FHE Analytics module of IAI.

7.2.2. Key Management
Key Management is a fundamental part of cryptographic technology and it refers to “the
process of handling and controlling cryptographic keys and related material during their life
cycle in a cryptographic system (…)” [88]. Key management is considered one of the most
difficult aspects associated with the use of cryptography [38] [39] [40]; of particular concern
are the scalability of the methods used to distribute keys and the usability of these methods.
Key life phases [65] are:

1. Key establishment;
2. Key storage;
3. Key destruction.

Key establishment (also called key exchange) is the process by which two (or more) parties
establish a shared secret key, called the session key (in opposition to long-lived keys, also called
long-termed key). The session key is subsequently used to achieve some cryptographic goal,
such as privacy.

There are two kinds of key exchange protocol:
1. Key transport (also called key distribution) protocols in which a key is created by one

party during key generation and securely transmitted to the second party. It can be done
with:

• a physically secure channel;

• an interactive protocol over an existing encryption channel with a trusted third-
party;

2. Key agreement protocols, in which both parties contribute information which jointly
establish the shared secret key. Using a key-agreement protocol avoids some of the key
distribution problems. It can done over an insecure channel.

Point to point communications and centralized key management are key distribution models
[36] relevant to symmetric cryptography.
Elliptic Curve Diffie-Hellman (ECDH) is a key agreement protocol which permits to share a
secret key. It uses public-key elliptic curve cryptography. The key distribution of public keys
is done through public key servers. The protocol output is a secret key which serves to encrypt
data with private-key cryptosystem. ECDH can be used with the elliptic curve Curve25519
which is fast and patent-free (https://cr.yp.to/ecdh.html), rather than Curve P-256 (from NIST).
This curve is designed for offering 128-bits security level and it is widely used. Let us mention,

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 51 of 89

a security vulnerability against another key agreement protocol called Diffie-Hellman (DH)
discovered in May 2015. After the Logjam attack16, secure use of DH requires doubling the size
of the parameter needed to generate the secret key to use this protocol in a safe way.
Vulnerabilities can always be discovered and so it is required to think about the scalability of
such parameters.

It is a good practice to change key regularly: the maximal recommended lifetime of a key is
called cryptoperiod. Cryptoperiods best-practices are indicated on the website
https://www.keylength.com/, which also contains key size recommendations from national and
internationally recognized standards organizations. During the cryptoperiod, keys have to be
stored. Key storage can be centralised in one secure place. The security of key storage strongly
depends on the security of the operating system in use. There also exists decentralised and
distributed solutions that are secret-sharing protocols in which several parties take part. After
the cryptoperiod, key have to be destroyed. Key destruction is not as simple as it seems. Once
again, this depends on the operating system in use.
One solution to manage keys safely is the use of a Key Management System (KMS). It is an
integrated approach for generating, distributing and managing cryptographic keys for devices
and applications. It is tailored to specific use-cases. It includes the backend functionality for
key generation, distribution, and replacement as well as the client functionality for injecting
keys, storing and managing keys on devices. In Figure 25, the KMS function is carried out by
the DPO/FHE Key Manager and the Secret Vault (i.e. the keys store).
Cryptographic keys (also known as Data Encryption Keys (DEK)) are used to encrypt the data.
A KMS serves to:

1. Generate DEK using a process involving a random number generator;
2. Securely store DEK using a Key Encryption Key (KEK);
3. Retrieve DEK using a secure protocol, such as TLS.

Examples of open source key management systems include:
• Barbican17, the OpenStack™18 security API (written in Python, Apache 2.0 license);

• Keybox19, web-based SSH access and key management from Sean Skavanagh20 (written
in Java, Apache 2.0 license);

• Vault21, secret server from HashiCorp22 (written in Go, Mozilla Public License 2.0).
We favour an open source, well documented solution with software maintenance. On one hand,
Barbican has already been used by HPE partner in the past and it is written in Python language.
On the other hand, Vault seems to be a popular and stable solution. The KMS should be
extendable. Indeed, homomorphic cryptosystems do not yet propose a standardized KMS. We
plan to evaluate both solutions in particular with respect to software fault, incompatibility and
maintainability.

16 https://weakdh.org/
17 https://wiki.openstack.org/wiki/Barbican/
18 https://en.wikipedia.org/wiki/OpenStack
19 http://sshkeybox.com/features.html
20 https://github.com/skavanagh
21 https://www.vaultproject.io/intro/index.html
22 https://en.wikipedia.org/wiki/HashiCorp

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 52 of 89

7.2.3. DPO - Key & Encryption Manager
The C3ISP data bundle is a cryptographic container built using the services of the Data
Protected Object (DPO) - Key & Encryption Manager (DPO K&E Manager, for short), which
mainly consists of the DPO Key Manager and the DPO Encryption Manager modules (see
Figure 25).
We give two scenarios where the DPO Key Manager module is used, that are aimed to address
the Pilot use cases with different trust assumptions. Then, we discuss the DPO Encryption
Manager.
One Key One Pilot scenario
In this setting, a symmetric key is created for each Pilot by the DPO Key Manager after request.
It is the simplest case in terms of management with the fewest keys. But this requires that each
Prosumer in a Pilot trusts other Prosumers. Indeed, all Prosumers’ data will be encrypted with
the same symmetric key.
One Key One Prosumer scenario
A second case can be considered where for each Prosumer in a Pilot a symmetric key is created
by the DPO Key Manager. It removes the trust assumption of the first scenario. In this case,
each Prosumer’s data will be encrypted with its own symmetric key.
In each scenario, the DPO K&E Manager interacts with the Bundle Manager as follows:

1. Bundle Manager invokes a request for encrypting DPO (union of CTI Data and the DSA
Policies) via an API of K&E Core;

2. K&E Core contacts the DPO Key Manager for retrieving the corresponding symmetric
key of the pilot/Prosumer;

3. DPO Key Manager invokes DPO Encryption Manager to encrypt the DPO with the
selected symmetric key;

4. The encrypted DPO is returned to Bundle Manager via K&E Core Manager.

7.2.3.1. Symmetric Encryption
In the C3ISP Framework, Data Encryption Keys (DEK) are used to encrypt C3ISP data bundles
and also for Data Manipulation Operations (see next section for encryption via DMOs for HE
computation). In this section, we describe the encryption process and a standard solution to
encrypt data in the first context.
Encryption protects information and it permits confidentiality (secret communication) between
communicating parties. The fastest solution is symmetric cryptography. It offers
computational security, that is, it is secure assuming adversaries are computationally limited. In
symmetric cryptography, symmetric key is used to encrypt and decrypt ciphertext respectively
by sender and receiver and it is a secret. Beforehand, this requires to generate and share a secret
key for each couple of communicating parties. In fact, one disadvantage of symmetric
cryptography [36], is that there are numerous keys to manage in a large network. Moreover,
secret key must remain secret at each end. It is a good practice to change keys regularly (see
considerations about cryptoperiod and sharing protocols in 7.2.2). Once a secret key is shared
between two actors, it can be used to encrypt messages and decrypt ciphertexts.
The Advanced Encryption System (AES for short) is a well-known (2001) and standardized
cryptosystem [34] by the National Institute of Standard and Technologies (NIST) of the US. It
is a symmetric block-cipher which operates on 128-bit blocks (it is the only block size specified
in the AES standard). AES can be used with 128-bit keys (it is called AES-128), this minimal
key size should be convenient to ensure security objectives in C3ISP context, that is 128 bits of

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 53 of 89

security (at least 5 years of computation is required to break it for the most pessimistic). It is
fast both in software and hardware. AES-128 is an adapted solution to encrypt a 128-bit message
and it is a deterministic algorithm. In practice, when we encrypt a variable-length message, this
requires to employ a block cipher mode of operation to offer confidentiality with a repeated
use: AES-128 uses a block-cipher encryption mode. We can consider a mode of operation with
an initialization vector (IV), which is a public data which permits to randomize encryption. In
probabilistic encryption (also called randomized encryption), multiple encryptions of the
same plaintext with the same key produce distinct ciphertexts. For example, a popular family
of modes of operation is authenticated encryption mode: it offers confidentiality and
authentication. In this family of modes, GCM (Galois Counter Mode) and CCM (Counter with
CBC-MAC) are patent-free authenticated encryption modes. The NSA Suite B Cryptography
uses AES with GCM mode in RFC (request for comments) concerning SSH, IPsec and TLS
cryptographic network protocols [44] [45] [46]. Concerning the IV, its description depends on
the chosen mode. For GCM mode, guidelines to select IV are furnished in [41].
At a lower level, there are open source implementations for encryption services:

• Network Security Services (NSS) (written in C, assembly, free software, FIPS 140-2
[49], latest release June 2017) Transport Layer Security (TLS cryptographic network
protocol);

• stunnel (written in C, cross-platform, free software, FIPS 140-2 [49], latest release April
2017) (TLS cryptographic network protocol);

• strongSwan (written in C, cross-platform, free software, latest release November 2016)
Internet Protocol Security (IPsec cryptographic network protocol);

• OpenSSH (written in C, cross-platform, free software, latest release March 2017)
Secure Shell (SSH cryptographic network protocol);

• OpenSSL (written in C, assembly, dual-licensed, latest release May 2017);

• Libgcrypt (written in C, free software, FIPS 140-2 [49], latest release June 2017, curve
25519) Key establishment library.

To encrypt the C3ISP data bundle, we will use the AES algorithm and we will evaluate these
open source encryption services for the implementation.

7.2.4. FHE - Key & Encryption Manager
C3ISP data bundles are created as in the previous description (DPO K&E Manager), when the
Prosumer’s data is sent to the C3ISP Framework (see also Create CTI use case in section 8.1).
In contrast, in this section, the Encryption Manager is used to operate homomorphic encryption,
with or without transcryption operation. Homomorphic encryption and transcryption are
introduced in the two next sections. From a high-level view, in C3ISP, homomorphic encryption
uses an asymmetric cryptosystem and transcryption uses a symmetric cryptosystem. Both use
non-standard cryptosystem contrarily to what we have just described in previous section, where
the DPO K&E Manager uses the AES cryptosystem. This has to be taken into account when
choosing the Key Management System (KMS).
FHE - Key & Encryption Manager interacts with the two family of cryptosystems: symmetric
and asymmetric. Symmetric encryption has been introduced in previous section with DPO K&E
Manager. Let us now introduce asymmetric cryptography. An asymmetric encryption scheme
requires two keys instead of the single key used in symmetric cryptography: a public key to
encrypt data and a private key to decrypt data. The private key is secret like the symmetric key
is in symmetric cryptography. The public key is not secret. Key management is simplified in

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 54 of 89

asymmetric cryptography since the private key is not shared. Nevertheless, authenticity of
public key needs to be ensured before encrypting data.
We consider a scenario with producer(s), the C3ISP Analytics Engine and consumer(s). If there
are several consumers, the process described in this section, key distribution and data
encryption has to be repeated for each consumer.

7.2.4.1. Homomorphic Encryption
Homomorphic Cryptography offers solutions to do analytics on ciphertexts without
decrypting (see D7.1, section 2.2.1.1). It permits for instance to delegate computations to an
untrusted server (e.g. the C3ISP Analytics Engine/FHE Analytics in C3ISP Framework):
homomorphic computation is briefly explained in Appendix 2: Homomorphic Computation.
The Fan-Vercauteren scheme [35] (FV for short) is a public-key homomorphic encryption
scheme (2012). Security in public-key cryptography is often based on the difficulty of a
mathematical problem. FV security is based on the Ring variant of the Learning With Errors
problem (RLWE) introduced in 2010 [47]. This problem reduces to an old and difficult
mathematical problem: the shortest vector problem over (ideal) lattices. Homomorphic schemes
such as FV employs the notion of (ciphertext) noise to guarantee the security. It can be viewed
as an error introduced deliberately to encrypt data as in code-based cryptography. Noise is
sampled from a distribution; it cannot be computed exactly. The size of the noise has to be
minimized. Indeed, decryption is not correct if the size of the noise is above a threshold. During
encryption, noise is added to compute a ciphertext.
We say a ciphertext is fresh if it is obtained directly from a plaintext, and homomorphic if it
is obtained after homomorphic operations.
A fresh ciphertext contains a small size noise. Homomorphic operations such as (homomorphic)
multiplication increase size of the noise. When homomorphic operations are done, ciphertext
size increases. A fresh ciphertext is always smaller than a homomorphic ciphertext. In FV,
ciphertexts are represented by polynomials. Sizes are computed using the maximal absolute
value in the polynomial. Polynomial degree and coefficient size are additional parameters.
These parameters permit trade-offs between security, time and memory usage, and the number
of possible operations over ciphertexts. On the other hand, security analysis is complex and
there is no key size recommendation contrarily to standardised cryptography. To simplify
analysis, some parameters have to be fixed.
A homomorphic protocol can be divided into three computational parts:

1. The encoded data is encrypted by clients with the public key of final client;
2. The server evaluates a Boolean circuit over fresh ciphertexts, which correspond to an

analytic treatment on data;
3. Finally, the client decrypts the resulting ciphertext with its private key.

As numerous RLWE-based homomorphic schemes, FV scheme employs a third key besides the
public key and the private key. It is called the evaluation key (or relinearisation key). It is a
public data. It is used after having operated the homomorphic multiplications. In these schemes,
homomorphic multiplication is followed by a procedure of relinearisation on the ciphertext,
which decreases the ciphertext size as well as the noise growth which depends exponentially
on the ciphertext size. In the Cingulata tool [11] used for the FHE Analytics module (see 5.1.1),
it occurs after each homomorphic multiplication. The public key is used by the client to encrypt
data, in contrast the evaluation key is used by the server. If key size is not a constraint for the
client, evaluation key can be part of the public key. Each consumer has one private key and one
public key associated with the homomorphic cryptosystem.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 55 of 89

Cingulata offers a compiler and runtime environment that permits to evaluate homomorphic
computations by taking C++ code as input.
In FHE analysis scenario, the FHE K&E Manager interacts with the FHE Analytics as follows:

1. FHE Analytics sends a request to the K&E Core for retrieving the evaluation key
corresponding to an analysis method via the FHE Key Manager;

2. FHE Key Manager returns this key to FHE Analytics via K&E Core, before the
Cingulata service in FHE Analytics starts to perform the analytics on the encrypted CTI
data in HE format;

3. The FHE Analytics result is sent to the C3ISP Framework via the ISI API create method
(Create CTI).

7.2.4.2. Homomorphic Encryption with Transcryption
Transcryption enables to decrease the communication cost, between clients (producers) and
server (in our case the C3ISP Analytics Engine). It helps the producers, but it has an additional
server-side cost. It is a hybrid encryption technique, which employs two cryptosystems A and
B. This technique permits to transform an encryption of a message with the first cryptosystem
A to an encryption of the same message with the second cryptosystem B. The cryptosystem A
is a symmetric homomorphic-friendly cryptosystem (it will be defined in the next
paragraphs). The cryptosystem B is a homomorphic public-key cryptosystem (as described
in the previous section), which permits to evaluate circuits over data encrypted with B.
Transcryption adds symmetric keys shared by producers and consumer in the homomorphic
protocol. Let us consider a case with only three actors: one producer, one C3ISP Analytics
Engine and one consumer.
The producer task is easier with transcryption during first part of communication. The producer
uses cryptosystem A23 which is fast and obtains a small ciphertexts that it sends to the C3ISP
Analytics Engine for computation. At the end, the consumer decrypts a homomorphic ciphertext
obtained with cryptosystem B24.
However, the C3ISP Analytics Engine task is heavier with transcription. It can be decomposed
like this:

1. C3ISP Analytics Engine receives encrypted data with symmetric key in cryptosystem
A;

2. It first encrypts it a second time with public key in cryptosystem B;
3. It evaluates a decryption circuit of cryptosystem A on twice-encrypted ciphertexts with

encrypted symmetric key with B;
4. It obtains encrypted data with B of initial data – we call it transcrypted data;
5. It evaluates the circuit which corresponds to the desired analytics operation (also called

treatment);
6. It submits the result to the ISI for storing it.

23 More precisely, the cryptosystem A is applied thanks to a DMO specified in the DSA policies when the producer
submits its CTI data to the C3ISP Framework. Then when a consumer asks for a FHE Analytics to the C3ISP
Analytics Engine, the CTI data encrypted with A is used.
24 This means that the result of the FHE Analytics is stored as an encrypted CTI data with cryptosystem B. When
a consumer needs to retrieve it from C3ISP, then it must be decrypted with cryptosystem B.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 56 of 89

To explain it better, we decomposed the circuit in two: decryption of A and analytics treatment.
In practice, these are two sub-circuits of one circuit. The multiplicative depth of this circuit is
the sum of the multiplicative depths of the two sub-circuits. A homomorphic-friendly
cryptosystem should have a circuit of decryption of small multiplicative depth: however, this is
not the case for the well-known AES cryptosystem, whose decryption circuit takes 18 minutes
according to [49] for a standard security level. Let us focus on the first sub-circuit. Each
producer has one symmetric key, that is one symmetric key associated with the symmetric
cryptosystem used for transcryption. Each consumer has one private key and one public key
associated with the homomorphic cryptosystem. For ease, consider only one producer and thus
only one symmetric key. The producer encrypts each CTI data with its symmetric key.
In the C3ISP Framework, we will encrypt the CTI data with the cryptosystem A via a Data
Manipulation Operation (DMO) that is invoked by the DMO Engine (see 4.1.3) when needed
(i.e. when specified in the DSA policy).
The FHE Key & Encryption Manager interacts with the DMO Engine as follows:

1. DMO Engine sends a request to encrypt CTI data with cryptosystem A to the FHE K&E
Manager;

2. K&E Core selects the private key for cryptosystem A by asking the FHE Key Manager,
and then asks FHE Encryption Manager to encrypt it with cryptosystem A;

3. K&E Core returns the encrypted CTI data to the DMO Engine.
The FHE Key & Encryption Manager interacts with the C3ISP Analytics Engine as follows:

1. The C3ISP Analytics Engine sends encrypted CTI data to the FHE K&E Manager;
2. K&E Core selects the key from FHE - Key Manager, which retrieves the (stored)

homomorphic encryption of the symmetric key, and then asks for transcrypting to the
FHE – Encryption Manager;

3. The transcrypting is processing now running: the FHE Encryption Manager re-encrypts
the encrypted CTI data with each public key;

4. The FHE – Encryption Manager finishes to perform the transcrypting process and
returns back to the C3ISP Analytics Engine (FHE Analytics) the transcrypted CTI data
via K&E Core;

5. Finally the FHE Analytics perform its computation and the C3ISP Analytics Engine
saves the resulting CTI data into the C3ISP Framework via the ISI (createCTI method).

Let us finally introduce a solution for transcryption. Kreyvium [16] is a homomorphic-friendly
symmetric cryptosystem with a 128-bit key to ensure a security level of 128-bit. It is a variant
of Trivium [51] cryptosystem (2008). It is a stream cipher contrarily to AES which is a block
cipher. These are the two families of symmetric cryptosystem: in stream cipher, plaintext is
encrypted bitwise rather than block-wise and it uses the notion of keystream, that is, a stream
of pseudo-random data. Kreyvium is an additive IV-based stream cipher. If we consider a binary
message, it means that encryption (resp. decryption) can be separated in the two following
phases:

1. Keystream is generated from the symmetric key and the initialization vector;
2. Ciphertext (resp. plaintext) is obtain by xoring plaintext (resp. ciphertext) and

keystream.
The generated keystream is independent of the message and it is generated during the offline
phase, which is the costly phase (i.e. can be done once for all CTI data). The second phase

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 57 of 89

depends on the message and it is the online phase, which is low-cost as it is only a XOR
operation.

7.3. Secure Audit Manager
To satisfy the security requirement C3ISP-Sec-10625, described in D7.1 section 2.2.1.3, we
want to use a centralised audit log management system that allows collecting, storing, and
analysing the received log information. All the C3ISP components should be integrated with
the Secure Audit Manager to track all the critical operations (i.e. the policies evaluation and
their enforcement results, analytics execution, etc.) in order to achieve the accountability
requirement for the C3ISP Framework.
The accountability derives from auditing and identity (see section 7.1); it means that, leveraging
on these services, C3ISP platform will be able to retroactively establish who did a certain action
on data, when this event occurred and how the action was performed.
The “Secure” property of the Audit Manager means that it has to provide a list of features to
preserve confidentiality, integrity and availability of audit logs. In particular, it should:

• Achieve confidentiality by means of secure transport mechanism from the log collection
point to the log storage area;

• Achieve integrity by means of a tamper-proof log storage system (e.g. a write-only log
database). Also, using digitally signed audit logs from the source to the Secure Audit
Manager helps achieving this goal;

• Achieve availability by making sure logs are not lost either during transportation (e.g.
by using unreliable transport protocols such as UDP, by using queue mechanism in case
of failures or communication issues, etc.), or due to Secure Audit Manager fault (e.g.
by using a replicated storage area).

The Secure Audit Manager should provide an analysis interface to securely access the stored
logs, by assuring controlling access (to authorised people only), segregation (not all logs should
be available to any user accessing it), secure access via a protected channel (e.g. TLS over
HTTP), as well as a form of self-audit (i.e. trace who is using the Secure Audit Manager).
The Secure Audit Manager could be used for several purposes, including compliance validation
and operational monitoring. In particular:

• Compliance validation, means that a Prosumer might want to be confident and validate
that the CTI data has been used in compliance with his or her DSA policies;

• Operational monitoring, means that who is operating the C3ISP Framework might want
to understand if it is running as expected.

The Secure Audit Manager should expose a standard interface to the C3ISP components, based
on REST technology [32], to allow them to send the audit logs to the centralised storage. We
plan to use an already existent Secure Audit Manager solution and we briefly evaluated some
open source solution, including:

25 C3ISP-Sec-106: “For accountability purposes, C3ISP has an auditing subsystem that traces the enforcement
results of the policies”

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 58 of 89

• The Elastic Stack26 (formerly ELK Stack): it is a well-known log management system
that includes a distributed fault-tolerant NoSQL database (Elasticsearch), a data
collection and log parsing (Logstash) and a visualisation platform (Kibana);

• Graylog27: it is a log management platform (log collection and parsing), also based on
Elasticsearch, that includes a Web-based analysis and visualisation front-end.

However, the C3ISP Framework should be decoupled from the specific Secure Audit Manager
solution and be able to integrate with other off-the-shelf products, including commercial
solutions: using standard communication protocols and log formats will allow to meet this goal.

26 https://www.elastic.co/products
27 https://www.graylog.org/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 59 of 89

8. Data Flow Diagrams
In this section, we describe the basic C3ISP Framework use cases by detailing the flow of
information between the components and their responsibilities. Further, we describe how these
basic use cases (i.e. operations) can be combined to realise complex scenarios. For each flow,
a UML [33] sequence diagram illustrates the communication and the temporal order of the
interactions.
The data involved in the flows can be either provided by the producer as CTI or the output of
an analytics service (what we call ‘result’). From the data flow point of view, there is no
significant difference between them, because the result of an analytics operation can be
considered a CTI itself. However, we will distinguish their nature at the DSA level. The DSA
will provide the possibility to specify different rules for data (CTI) and analytics results.

8.1. Create CTI
This flow describes the operation that an external entity issues when it wants to provide input
data to the C3ISP Framework.
The actor is a Prosumer in the role of a Producer. In this scenario, the Producer is intended as a
Pilot application or the IAI on behalf of the analytics Pilot application, who wants to submit
data to the C3ISP Framework. The objective of this operation is to share data and then asking
for an analytics service (on it or on CTI shared by other Prosumers participating in the DSA).
The Producer submits the own information to the C3ISP Framework by invoking the ISI API
which exposes a service (Create Normalised CTI) for creating a sharable protected CTI. This
service is implemented in different steps which involve several C3ISP components:

• The Format Adapter to normalise the CTI by converting the data in a specific common
format, adopted by the C3ISP Framework, as explained in D7.1 section 2.1.1. This
means that the original data is expressed in the STIX standard format, enriched with
additional fields for supporting the management of the data. This step is jumped if the
input data are already in the expected format (for example, in case of log files). We
foresee another implementation of the create method which does not use the Format
Adapter and provide as input data a normalized CTI (Create CTI);

• The DSA Adapter for retrieving the suitable DSA from the DSA Manager, in order to
have the rules to protect the CTI, and for creating the C3ISP data bundle, which
represents the protected object (the CTI “plus” the DSA for protecting it). The bundle
is stored in the Data Protected Object Storage by the DSA Adapter and an identifier
is returned for retrieving the CTI in the further operations;

• The Key & Encryption Manager, which is responsible for the encryption of the CTI
and it is invoked by the DSA Adapter, before creating the bundle.

The interaction between these components is shown in the following sequence diagrams: as we
explained before, we support two different implementations of the create method: one for
creating CTIs which need to be formatted before the creation, and one for CTI data which are

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 60 of 89

already in the expected format. Unless the usage of the Format Adapter, the flows proceed
analogously.

Figure 26: Create CTI Sequence Diagram

Figure 27 Create Normalised CTI Sequence Diagram

Note that to simplify the diagram we have omitted some validating steps at the DSA Adapter
level. When the DSA is retrieved, it checks about the DSA validity since the DSA can expire,
be revoked or someone might be updating it while it is going to be used (refer to D8.1 section

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 61 of 89

3.1 for the DSA state diagram). To further simplify, the interaction with the DSA Manager is
limited to the DSA API and the inner DSA Manager behaviour is not shown.
The flow is applicable to all the deployment models described in Section 3, regardless of
whether the ISI is local or remote.

8.2. Read shared CTI
This flow describes the operation that an external entity issues when it wants to get a data from
the C3ISP Framework: either a previously submitted data, or a shared data by some other entity
being subject to the defined DSA rules.
The actor is a Prosumer in the role of a Consumer. In this scenario, the Consumer is intended
as the Pilot application or the IAI on behalf of the analytics Pilot application, who wants to read
a CTI already stored in the DPOS.
The actor must have a valid reference id to the CTI in order to invoke the Read shared CTI
method exposed by the ISI API. Before getting the protected object from the DPOS, the
policies defined in the attached DSA must be evaluated. As described in the Create CTI flow,
the DSA Adapter is contacted for checking the DSA validity and, if it is valid, the DSA access
and usage rules are processed. Only if the read operation on the required data is allowed for that
Prosumer, the CTI is delivered to the requestor from the DPOS. Additionally, before providing
CTI to the Prosumer, a data manipulation operation might be applied (for example, for
obfuscate some CTI information), as prescribed in the defined DSA rules.
The sequence diagram, in Figure 28, shows the flow just described.

Figure 28: Read CTI Sequence Diagram

The flow is applicable to all the deployment models described in Section 3, regardless of
whether the ISI is local or remote.

8.3. Move CTI
This flow describes the operation provided by the C3ISP Framework to move a previously
“created” (see Section 8.1) object from an ISI node (source) to another ISI node (target). This

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 62 of 89

is realised as a create operation on the target node with the same object retrieved from the source
node, followed by a delete operation of the source node.
Typically the actor is a Prosumer in the role of a Producer. In this scenario, the Producer is
intended as the Pilot application or the IAI on behalf of the analytics Pilot application, who
wants to Move CTI from a local ISI (e.g. from the Producer premises) to a remote ISI (i.e. not
under the control of the Producer) for both sharing and analysis. The producer invokes the Move
CTI method exposed by the ISI API, giving a valid CTI id reference and a reference to the
remote/target ISI, as input parameter.
Since the object is stored in the local ISI, the attached DSA policies must be evaluated, for
example to check if the move operation is allowed and if there are DMOs that should be applied
before moving. Once the policies at the local ISI level are enforced, the CTI is retrieved from
the local DPOS (potentially manipulated according to the policies) and then created at the
remote target ISI (via the remote Create CTI). At this stage, other policies are checked, e.g. to
verify that this operation is allowed and how.
It is important to note that in this way different policies can be applied locally or remotely in
the ISI. In particular, optional DMOs might be applied before moving the CTI to the remote
ISI, while other (different) DMOs might be applied when the CTI is stored into the remote
target ISI.
For the same reason, before storing the new CTI, a new C3ISP data bundle is created (via the
Create CTI), since a different set of policies should be applied to it in the remote ISI. The move
operation returns to the Producer the id of the transferred CTI and, as side effect, the original
CTI is deleted from the local ISI.
The sequence diagram of the scenario is represented in Figure 29.

Figure 29: Move CTI Sequence Diagram

The flow is applicable to a hybrid deployment model, where there is an on-premises ISI and a
centralised ISI (see Section 3.2), so that the Producer wants to move a CTI from the local ISI
to the remote one. The flow is analogous in a fully distributed deployment model (Section 3.4)
for sharing results between ISIs.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 63 of 89

8.4. Delete CTI
This flow describes the operation that an external entity issues when it wants to delete a CTI
from the C3ISP Framework.
The actor is a Prosumer in the role of a Producer. In this scenario, the Producer is intended as a
Pilot application or the IAI on behalf of the analytics Pilot application, who has the authority
(i.e. the policies allow to perform this operation) for delete a CTI from the C3ISP Framework.
The objective of this operation is remove data from the Data Protected Object Storege, to make
the CTI unavailable to the C3ISP Framework anymore.
Given the CTI-Id for identifying an existing CTI in the C3ISP framework, the ISI API invokes
the DSA Adapter for retrieving the DSA associated to the CTI and to check the policies in order
to allow or deny the requested operation. If the Prosumer is authorised to perform the operation,
the CTI (and the bundle) is deleted from the Data Protected Object Storage. The operation result
is returned to the caller as notification.
The following diagram (Figure 30) shows the flow just described.

Figure 30: Delete CTI Sequence Diagram

8.5. Invoke C3ISP analytics service
This flow describes the feature provided by the C3ISP Framework for invoking a generic
analytic service on a CTI, given the service name and the CTI-Id. The flow is also applicable
in case of multiple analytics services invocation (see Section 5.5). The Consumer uses the
suitable method exposed by the IAI API.
The implementation of this service involves:

• the ISI API, for retrieving the CTI using the readCTI operation;

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 64 of 89

• the Format Adapter, for retrieving data in the expected format;

• the C3ISP Analytics Engine, for performing the analytics operation leveraging on
methods and tools offered by the C3ISP Framework for this purpose;

• the ISI API again, for creating the CTI as analytics result data.

The service returns a CTI-Id. For retrieving the content of the result the Prosumer should use
the readCTI method of the ISI API, given the returned CTI-Id.
The following diagram shows the interaction between these components.

Figure 31: Invoke Analytics Service Sequence Diagram

8.6. Invoke legacy analytics service
In order to use the legacy analytics service that is exposed by the IAI API, the Prosumer is
assumed to have a reference Id of the CTI that should later be consumed by the Legacy
Analytics Engine (LAE). After the service request is received by the IAI API, it requests the
CTI via the ISI API using the readCTI operation (see Section 8.2) and indicates that the CTI
will be stored into a Virtual Data Lake (VDL) instance. The ISI API requests the Format
Adapter to process and format the retrieved CTI in such a way that it is compliant with the
associated DSA policy (e.g., encrypting and/or anonymising some portions of the data). The
formatted data is sent back to the IAI API, which then instantiates the VDL instance (if not
existent already), e.g. create a new HDFS folder, and stores the data into the VDL. The IAI API
keeps hold of the access information to the VDL, such as, the connection details, access
credentials, etc. Once the data is copied into the VDL, the IAI API sends a service request to
the LAE, which then reads the data from the VDL and perform analytics on it. The VDL access
details need to be communicated to the LAE in a secure and suitable way depending on
available data source configuration options, e.g., the details may be included in the request
message body or written into the LAE’s system database directly. After the analytics operation
is completed the result will be returned to the Prosumer via the IAI API. Figure 32 shows the
sequence diagram of the described flow. In case the LAE requires direct user interaction for

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 65 of 89

analysing the data, e.g. for visualisation purposes, the IAI API will create the VDL instance
without specifically running an analytics job (see Section 5.5) and redirect the Prosumer’s
browser to the LAE user interface. Furthermore, the IAI API could also have both the
synchronous and asynchronous API style, where it can notify the Prosumer once the analytics
result is ready.

Figure 32: Invoke Legacy Analytics Service

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 66 of 89

9. Requirements mapping from D7.1
This section is dedicated to mapping the C3ISP reference architecture components with the
framework requirements drawn in the D7.1 in order to check the coverage with them.

9.1. Data Sharing Requirements
Table 1 – Coverage of Data Sharing Requirements

ID Requirements Coverage

C3ISP-Fun-
DS-001

C3ISP allows parties that want to
exchange CTI data to define Data
Sharing Agreements.

DSA Manager and its component DSA
Editor. The Data Sharing Agreements are
created and updated by the DSA Editor.

C3ISP-Fun-
DS-002

C3ISP allows the sharing of files
(including log data, threat
intelligence data, analysis reports)

ISI subsystem, which is accessible by the ISI
API. The shared data is stored in and
retrieved from the Data Protected Object
Storage.

C3ISP-Fun-
DS-003

C3ISP grants Prosumers the control
over the sharing of data (i.e.
Prosumers have both tools and
functionalities to specify
“constraints” that regulate the data
sharing process)

DSA Manager and its components allow
Prosumers to control data sharing via the
setting of constraint in the DSA policies
using the DSA Editor.

C3ISP-Fun-
DS-004

C3ISP allows controlling the process
of data sharing at file level

The DSA Manager allows the DSA policy to
be created, and the ISI subsystem allows the
policy and data file to be stored together in
the Data Protected Object Storage.

C3ISP-Fun-
DS-005

C3ISP allows defining policies (i.e. a
set of rules) that regulate the data
sharing process

DSA Manager and its component DSA
Editor. The Data Sharing Agreements are
created and updated by the DSA Editor.

C3ISP-Fun-
DS-006

C3ISP policies allow access control
to the shared data (i.e. define
conditions to be verified before
accessing the data)

The DSA Adapter controls access to the
Data Protected Object Storage by enforcing
DSA policy stored with the data file.

C3ISP-Fun-
DS-007

C3ISP policies allow usage control
of the shared data (i.e. define
conditions to be continuously verify
while the data is being consumed and
after it has been accessed)

The Service Usage Control Adapter is the
component that enforces usage control on
the shared data.

C3ISP-Fun-
DS-008

C3ISP policies allow defining rules
that can evaluate contextual
information (i.e. information from
the environment/use case)

The DSA Editor allows rules to be defined
for contextual information.

C3ISP-Fun-
DS-009

C3ISP allows defining notifications
(i.e. email, SNMP, etc.) that are
triggered once the analytic service
result is available (i.e. be able to
encode this requirement in a policy

Notifications are encoded in DSA policies as
obligations when the analysis finishes. The
Obligations Engine is a component of the
Service Usage Control Adapter.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 67 of 89

rule). A notification mechanism
could be email.

C3ISP-Fun-
DS-010

C3ISP provides evidences (e.g. audit
logs) of the compliance to the sharing
policies enforcement

The Secure Audit Manager from Common
Security Service subsystem is responsible
for storing auditing records.

C3ISP-Fun-
DS-011

C3ISP policies allow writing “pre-
processing rules” on the data to be
shared, which are data manipulation
operations performed before the data
is shared with the other party(ies).
These operations should include: (i)
sanitisation operations (see 9.3) for
minimising sensitive data exchange;
(ii) encryption mechanisms

The pre-processing rules are encoded in the
DSA policies as obligations to be carried out
before data access is granted.

C3ISP-Fun-
DS-012

C3ISP allows specifying policy rules
to control the risk of data sharing (i.e.
if a metrics is over a certain
threshold, data can’t be shared or
additional sanitisation measures must
be applied before sharing)

The risk of data sharing will be encoded in
the DSA policies. How this will be done will
defined in the second year of the project.

C3ISP-Fun-
DS-013

C3ISP could use an open and/or
standard policy description language
for data sharing (DSA/XACML)

The DSA Mapper converts from controlled
natural language into XACML (with
extensions).

C3ISP-Fun-
DS-014

C3ISP allows defining multi-lateral
Data Sharing Agreements, i.e. DSA
between multiple Prosumers (two or
more)

The DSA Manager supports defining the
parties participating in the agreement.

9.2. Data Analytics Requirements
Table 2 – Coverage of Data Analytics Requirements

ID Requirements Coverage

C3ISP-Fun-
DA-001

C3ISP allows defining policies (i.e. a
set of rules) for data analytics
operations to control what analysis
can be performed on the Prosumer’s
data

This will be an extension to the DSA policy
to be provided in the second year of the
project.

C3ISP-Fun-
DA-002

C3ISP policies allows writing “post-
processing rules” on analytics
operation result, which are data
manipulation operations performed
before returning it to the
Prosumer(s). DMOs should include
data sanitisation and (de)encryption
(see also C3ISP-Fun-DS-011 and
9.3)

This will be an extension to the DSA policy
to be provided in the second year of the
project.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 68 of 89

C3ISP-Fun-
DA-003

C3ISP provides an application
programming interface for executing
DMOs, such as privacy-preserving
operations on data (e.g. data
sanitisation or encryption)

The API for the DSA Adapter is provided by
the DSA Adapter Front End via the ISI API.

C3ISP-Fun-
DA-004

C3ISP allows executing privacy-
preserving DMOs on all or part of
the data

The DSA policy will allow data
manipulation operations (DMOs) to be
defined, and the DMO Engine will execute
these.

C3ISP-Fun-
DA-005

C3ISP provides an application
programming interface for
supporting the analysis on the data
stored in C3ISP data lake, in
compliance with the associated DSA
policies

This is supported by the IAI API and ISI
API.

C3ISP-Fun-
DA-006

C3ISP provides an application
programming interface to query data
and analytics operation results that
are stored in C3ISP data lake in
compliance with the DSA policies

This is supported by the ISI API

C3ISP-Fun-
DA-007

C3ISP supports standard query
language (e.g. SQL) for querying
data and analytics operation results
from C3ISP data lake

C3ISP Analytics Engine (and maybe the
DPOS) and Virtual Data Lake

C3ISP-Fun-
DA-008

C3ISP provides a function for
automatic threat classification of
analytics operation results

Not currently

C3ISP-Fun-
DA-009

C3ISP provides a function for
automated mapping of analytics
operation results to interested
stakeholders/Prosumers that are
specified in the DSA

Not currently, but planned to be incorporate
in the second year.

C3ISP-Fun-
DA-010

C3ISP provides a function to convert
analytics operation results to
standardised and machine-readable
formats (e.g. STIX) in compliance
with the DSA

The (ISI) Format Adapter supports the
conversation of formats.

C3ISP-Fun-
DA-011

C3ISP provides an application
programming interface to integrate
external analytics tools while
preserving the policy compliance
(i.e., extract data from C3ISP data
lake and feed it into analytics tool)

The IAI API provides access to the Legacy
Analytics Engine and Virtual Data Lake.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 69 of 89

C3ISP-Fun-
DA-012

C3ISP provides near real-time
notifications of analytics operation
results (see also C3ISP-Fun-DS-009)

The Obligations Engine of the Service
Usage Control Adapter provides this
functionality.

C3ISP-Fun-
DA-013

C3ISP provides a function to query
analytics operation results of specific
categories (e.g. malware analysis,
attack on cloud platform)

The IAI API for results stored in Virtual
Data Lake.
The ISI API for results stored DPOS.

C3ISP-Fun-
DA-014

C3ISP supports different categories
for analytics operations results, i.e.
threat types, threat risks, threat
origins, threat costs, regulatory and
compliance concerns

The Legacy Analytics Engine for data stored
in Virtual Data Lake.
The C3ISP Analytics Engine for data stored
DPOS.

C3ISP-Fun-
DA-015

C3ISP supports the provisioning of
analytics operation results in form of
actionable items (e.g. security
patches, recommended
configurations, fixes, etc.). See also
the OpenC2 description in 9.4.3.

The Legacy Analytics Engine for data stored
in Virtual Data Lake.
The C3ISP Analytics Engine for data stored
DPOS.

C3ISP-Fun-
DA-016

C3ISP provides a dashboard showing
status and results of the analysis

It is not part of the C3ISP architecture, but a
simple dashboard will be provided to the
pilots during the second year.

C3ISP-Fun-
DA-017

C3ISP allows scheduling of the
provisioning of analytics operation
results (e.g. on demand, periodical,
etc.)

The DSA Policy and the Service Usage
Control Adapter provide the scheduling.

C3ISP-Fun-
DA-018

When using homomorphic
encryption, before data analytics
execution, data is represented as bits
or integers.

The FHE DMO Engine will convert the
data.

C3ISP-Fun-
DA-019

When using homomorphic
encryption, data is of constant length
(in real world scenarios). If not, a
possible solution is to compute a
hash function (not necessarily a
cryptographic one) on data.

The FHE DMO Engine will prepare the
data.

C3ISP-Fun-
DA-020

When using homomorphic
encryption, analytics operands
(cipher-texts) are encrypted bits
(most current case) or encrypted
integers with considered
homomorphic cryptosystems.

The FHE DMO Engine will prepare the
operands.

C3ISP-Fun-
DA-021

When using homomorphic
encryption, analytics operations are
expressible in terms of two
elementary operations:

The FHE DMO Engine will perform the
homomorphic operations.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 70 of 89

(homomorphic) addition and
(homomorphic) multiplication with
considered homomorphic
cryptosystems, Homomorphic sum
(resp. product) of two cipher-texts is
a cipher-text of the sum (resp. the
product) of two associated plaintexts.

C3ISP-Fun-
DA-022

When using homomorphic
encryption, analytics computation on
encrypted bits is represented as a
Boolean circuit with multiplicative
depth28 roughly 20 or 30.

The FHE DMO Engine will perform the
homomorphic operations.

C3ISP-Fun-
DA-023

When using homomorphic
encryption, the number of
multiplicative gates should be
minimized to decrease latency of
homomorphic evaluation.

This will be supported by the FHE DMO
Engine.

9.3. Data Manipulation Operations
In the context of the DMOs described for C3ISP-Fun-DS-011 and C3ISP-Fun-DA-002,
possible anonymization techniques that find application in the Pilots’ use cases are:

• Suppression of identifiers (e.g. names);

• Generalization of values in certain finite domains (e.g. subnet masking);

• Randomization methods that anonymize individual values (and thereby one's
membership in the data set) in such a way that accurate aggregates for certain functions
(e.g. mean) can be produced when enough data is provided.

DMOs includes also homomorphic encryption described in 7.2.4.1.

9.4. Non-Functional Requirements

9.4.1. Information Security Requirements
Table 3 – Coverage of Information Security Requirements

ID Requirements Coverage

C3ISP-Sec-
001

There is mutual authentication
carried out between the C3ISP
Framework and the Prosumers at the
start of any communication.

The Identity Manager of CSS will support
this.

C3ISP-Sec-
002

Confidentiality and Integrity of the
DSA communications between the

The Key & Encryption Manager of CSS will
support this.

28 Multiplicative depth is the maximum number of multiplicative gates between an input and an output of the
circuit.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 71 of 89

Prosumers and C3ISP Service is
guaranteed.

C3ISP-Sec-
003

The transfer of CTI from the
Prosumers to the C3ISP framework
is secure (w.r.t. confidentiality and
integrity).

The Key & Encryption Manager of CSS will
support this.

C3ISP-Sec-
004

The integrity of the CTI data stored
on the C3ISP Framework is
maintained.

The ISI Data Protected Object Storage will
support this.

C3ISP-Sec-
005

The transfer of analysis results from
the C3ISP framework to the
Prosumers is secure (w.r.t.
confidentiality and integrity).

The Key & Encryption Manager will
support this.

C3ISP-Sec-
006

C3ISP Framework is able to process
anonymised or homomorphically
encrypted CTI shared with it by the
Prosumers.

The C3ISP Analytics Service will support
the processing of anonymised CTI.
The FHE DMO will support the processing
of homomorphically encrypted CTI.

C3ISP-Sec-
007

Minimum security level for FHE is
at least 80 bits (security strength).

This is supported by the FHE DMO.

C3ISP-Sec-
008

Maximum security level is at most
128 bits (computational efficiency),
for real world scenarios.

This is supported by the FHE DMO.

C3ISP-Sec-
009

The homomorphic encryption uses
randomization methods (see section
2.1.3). It is required to have semantic
security. That is, it should be hard to
distinguish between the encryption
of any two messages, even if the
public key is known to the attacker
and even if the two messages are
chosen by the attacker (chosen
plaintext attacks). (In return, cipher-
text size is greater than plaintext
size).

This is supported by the FHE DMO.

9.4.2. Regulatory Requirements
Table 4 – Coverage of Regulatory Requirements

ID Requirements Coverage

C3ISP-Sec-
101

The Prosumers are given the details
of their data’s lifecycle at the C3ISP
Framework (GDPR Requirement).

This is supported by the Security Auditor
Manager of the CSS.

C3ISP-Sec-
102

The Prosumers are able to reject or
cancel the terms and conditions of

The DSA Editor will allow Prosumers to
edit their policies at any time, and the
Service Usage Controller Adapter will

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 72 of 89

their DSA with the C3ISP
Framework at any time.
(GDPR Requirement)

implement changes to the DSA policies in
near real-time.

C3ISP-Sec-
103

The Prosumers are informed of any
breach or compromise of the C3ISP
framework within 72 hours, so that
they can take remedial actions.
(GDPR Requirement)

This is an operational matter.

C3ISP-Sec-
104

The Prosumers are able to define
data access and usage policies

The DSA Editor of the DSA Manager
supports this.

C3ISP-Sec-
105

Data sharing and data analysis is
compliant with the law obligations
and/or the industrial standard

It is possible to have pre-configured DSA
templates ready with (some) GDPR rules to
be used as a starting point to define specific
Prosumers DSA policies.

C3ISP-Sec-
106

For accountability purposes, C3ISP
has an auditing subsystem that traces
the enforcement results of the
policies

The Secure Audit Manager provides this
functionality.

9.4.3. Operational Requirements

9.4.3.1. Cloud Computing and Deployment Models Requirements
Table 5 – Coverage of Cloud Computing and Deployment Models Requirements

ID Requirements Coverage

C3ISP-Ope-
001

C3ISP is available as a service,
following the SaaS model

The services of the C3ISP Framework are
provided via DSA API, ISI API and IAI
API.

C3ISP-Ope-
002

C3ISP is multi-tenant, where several
tenants (i.e. pilots) can use the
framework at the same time w/o
troubles

This is to be covered by the implementation
of the microservice architecture (e.g., see
Section 2.1)

C3ISP-Ope-
003

C3ISP is independent of the CSP
where it runs (e.g. public or private)

The overall design makes the C3ISP
Framework independent of any CSP.

C3ISP-Ope-
004

DSA policies allow to specify
different DMOs depending on the
trust level the Prosumer has on the
CSP or on other Prosumers in the
federation

The DSA Editor of the DSA Manager
support this.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 73 of 89

9.4.3.2. Extensibility and Interoperability Requirements
Table 6 – Coverage of Extensibility and Interoperability Requirements

ID Requirements Coverage

C3ISP-Ope-
101

C3ISP provides an open interface for
application integration (e.g. a C3ISP
API)

The services of the C3ISP Framework are
provided via DSA API, ISI API and IAI
API.

C3ISP-Ope-
102

C3ISP uses a standard to represent
data in order to simplify the
integration with the framework

The Format Adapter will support standard
formats, such as, STIX.

C3ISP-Ope-
103

C3ISP should be able to represent
different kind of cyber observables

This is supported because CybOX [7] are
specific STIX objects.

C3ISP-Ope-
104

C3ISP provides information related
to the cyber observables which
characterize it

This is supported because CybOX are
specific STIX objects.

9.4.4. Performance Requirements
The performance of the C3ISP proof of concept implementation is not of primary concern.
Table 7 – Coverage of Performance Requirements

ID Requirements

C3ISP-Per-001 C3ISP does not introduce significant delay when enforcing policies for
sharing analytics operation results

C3ISP-Per-002 FHE services are deployed into a physical server, not into a Virtual
Machine, because of using parallelism method for optimizing the
Boolean circuits.

C3ISP-Per-003 With each pilot’s use case, C3ISP defines an interval of tolerant
response delay, in order to obtain a compromise resource availability
for other requests on FHE services (response delay requirement). This
requirement applies only if FHE is used.

9.4.5. Usability Requirements
Table 8 – Coverage of Usability Requirements

ID Requirements Coverage

C3ISP-Usa-
001

C3ISP provides response information
(results or errors) about requests
(analytics query) to the C3ISP data
lake (e.g. why the requested data
cannot be provided to Prosumers)

C3ISP-Usa-
002

C3ISP provides a tool to guide and
support the end user in the definition
of DSA policies (authorisations,
prohibitions, obligations)

This is supported by the DSA Editor,

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 74 of 89

C3ISP-Usa-
003

C3ISP’s processes are seamless and
transparent in order to not interfere
with the core operations of the pilots

This is a deployment issue, and can be
solved by running C3ISP on separate
systems.

C3ISP-Usa-
004

C3ISP’s representation of analytics
results is effective and efficient for
the end user.

It is not part of the C3ISP architecture, but a
simple UI will be provided to the pilots
during the second year.

C3ISP-Usa-
005

To use the FHE technology, the
decryption service (library) is
installed or integrated in client
applications.

This is an operational requirement for the
testbed.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 75 of 89

10. Update on the Development and Test Bed Environments
In deliverable D6.1, we planned to have two environments for supporting the C3ISP Framework
implementation activities: Development and Test Bed environments. The Development
Environment hosts all the tools to create, store, build and evaluate the quality and security of
the software artefacts. For simplicity, we decided to have it deployed on a single virtual machine
(VM).
The Test Bed Environment has instead been conceived to host a running instance of the C3ISP
reference architecture, deployed to provide services to the Pilots. As described in Section 3,
there are different deployment models for the C3ISP Framework. In our planned Test Bed will
have the services centralised and will then be classified as Fully Centralised. However, since
we designed the C3ISP Framework for multi-tenancy (or at least multi-user), we think it could
be also used for the Hybrid mod, in which the Pilot will run its own local ISI instance.
The two environments are integrated: Development environment continuously delivers the
software artefacts to the Test Bed environment once new or updated versions are available. In
this way, the Pilots will always have the very latest release of the C3ISP Framework for their
testing and evaluation activities. Having the latest software release could also incur in stability
issues, but to mitigate this factor we already thought in deliverable D6.1 to adopt a continuous
integration and delivery service that also performs automated testing, quality and security issue
investigations.
The current installation will evolve over time in order to adapt to the evolution of the project,
in case is needed. This is valid both for the basic infrastructure (OS and virtual machines
configurations), as well as, for software and tools. Having a continuous integration service can
also assure the issues that might rise for this kind of upgrades can be controlled by the
reproducibility of the building and testing activities.

10.1. Development Environment
In the following sections, we describe what has currently been installed to match the
requirements reported in deliverable D7.1 (sections 3.1 and 3.2) 29 for both operating
environments. In particular, we split between base hardware/OS settings and software
configuration.
All the environments described below are hosted at CNR data centre, and they can be reached
through SSH for command line administration. We activated also secure HTTPS connections
(HTTP over TLS) on each installed web service, by adopting digital certificates signed by
“Let’s Encrypt”30, a well-known free and open certification authority.

10.1.1. Base configuration
The base configuration of the development environment has been fully installed. It is based on
a VM (run via a VMware hypervisor) with 8 VCPU with 12 31 GB RAM, named
devc3isp.iit.cnr.it. It runs Ubuntu 16.04.3 LTS.

29 When appropriate, matching requirements are reported between square brackets
30 https://letsencrypt.org/ is a public benefit organisation that aims to spread the usage of encrypted web
connections as much as possible, by releasing free X.509 certificates for Transport Layer Security (TLS)
31 RAM has been improved with respect to 8GB planned in D7.1, because we observed higher memory
requirements during source code compiling.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 76 of 89

The base configuration includes the following software components:
• Oracle Java Development Kit, version 1.8 [C3ISP-Dev-008];

• GCC (GNU project C and C++ compiler), version 5.4 [C3ISP-Dev-009];

• Python, versions 2.7 and 3.5 [C3ISP-Dev-010].

10.1.2. Software configuration
This section reports on the status of the development tools mentioned in deliverable D7.1. They
support the process of continuous integration and delivery of software artefacts from the
development to the test bed, as well as the evaluation of their quality and the assessment of their
security posture. Our aim is to assure that the developed software is of high quality. Of course,
these are “just” state-of-the-art tools, which need to be used in the context of a disciplined
software development and engineering process.
The installed tools are the following:

• GitLab Community Edition32 is a git-based distributed version control system that
will host the C3ISP software repository. It addresses in particular requirement [C3ISP-
Dev-001]. The configured service is available at https://devc3isp.iit.cnr.it:8443/.

A sample screenshot is provided in the next figure:

Figure 33: GitLab Web Interface

• Jenkins 33 is the tool which manages the continuous integration and deployment
automation processes. It addresses in particular requirement [C3ISP-Dev-002]. The
configured service is available at https://devc3isp.iit.cnr.it/jenkins. Most of the tools
described next that are used to check the quality and security of the software artefacts
are directly integrated with it.

32 https://gitlab.com/gitlab-org/gitlab-ce
33 https://jenkins.io/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 77 of 89

A sample screenshot is provided in the next figure:

Figure 34: Jenkins Web Interface

Jenkins has been currently integrated with some of quality and assurance tools
described in deliverable D7.1, in particular:

o CkeckStyle for Java code syntactical checking and standard adherence. The
next figure shows a sample of its output that highlights the categories of
syntactical defects found:

Figure 35: CheckStyle Result Sample

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 78 of 89

o FindBugs34 and FindSecurityBugs for Java code bugs discovering and security
static analysis. The figure below illustrates few code issues found by these tools:

Figure 36: FindBugs Result Sample

o OWASP Dependency Check for checking security vulnerabilities in external
code dependencies (e.g. used Java libraries). The next figure shows some
vulnerable libraries used in a sample code:

Figure 37: OWASP Dependency Check Summary Sample

o We also integrated a tool to verify the coverage of the unit tests (the unit tests
are created with the Junit35 framework) with respect to the source code, which
was not originally planned in D7.1. However, we think it is interesting for the
overall project quality to be able to understand such coverage degree. We
selected for this task the most well-known tool called Cobertura36. Cobertura
measures the percentage of code covered by the unit test and allows the
identification of part of code not involved in the tests. It can be easily integrated
in a continuous integration environment, since it can be executed using Maven
for analysing Java source code.

The next figure shows a screenshot of it:

34 FindBugs project has been superseded and is being migrated to its successor SpotBugs,
https://spotbugs.github.io/. We plan to upgrade to SpotBugs once it will be stable and production ready.
35 http://junit.org
36 http://cobertura.github.io/cobertura/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 79 of 89

Figure 38: JaCoCo Coverage Report Example

These tools have been verified with some custom Java sample code.
• OpenLDAP37 is used as the common authentication Lightweight Directory Access

Protocol (LDAP) repository for users signing into the development environment
services. It has been integrated with all the services that require user authentication (e.g.,
GitLab and Jenkins), such in a way that user management is now centralised in
OpenLDAP. We also installed phpLDAPadmin as a graphical front-end for managing
users.

The next picture provides a screenshot of the installed phpLDAPadmin:

Figure 39: phpLDAPadmin Web Interface

• Maven and make tools have also been installed for build automation for Java, and
C/C++.

The development environment is not yet completed. As reported in deliverable D7.1, we will
shortly install the missing components, namely Nexus (the artefacts repository) and Trac (the

37 https://www.openldap.org/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 80 of 89

bug tracking system). We also have in roadmap the integration of the tools for C/C++ and
python quality/security checkers (CppCheck and Tox), as well as the tool for dynamic code
security checking (OWASP Zap).
The general schema of the integrated tools for the development environment is as follows:

Figure 40: Development Environments Tools

The typical usage scenario is as follows:
1. The source code is pushed from the developers’ workstations to the versioning system

(git);

2. Automatically (or on demand), the build automation server (Jenkins) runs the
continuous integration job that orchestrates the whole build process;

3. Jenkins uses Maven for Java (or Make for C/C++) to:

a. Build the binaries artefacts from source code;

b. Run the unit tests;

c. Verify the test coverage;

d. Evaluate the quality and security of the code (by invoking CheckSytle,
FindBugs/FindSecurityBugs, OWASP Dependency Check);

e. Deploy the resulting artefact to an application server (Tomcat) which is running on
the Test Bed environment (thus linking the two environments);

4. Resulting artefacts are stored onto the artefacts repository (Nexus), e.g. to be shared
between jobs (in case of libraries) or as historical archive;

5. Optionally, defects are filled into Trac by developers (it is worth noticing that Trac
defects, git versions and Jenkins build numbers can be linked together to monitor issue
resolution).

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 81 of 89

10.2. Test Bed Environment
The Test Bed Environment is at its very early stage since the development activities will start
after M12 (which is why we concentrated so much on the preparation of the Development
Environment, as described earlier). The following table maps the C3ISP subsystems to the Test
Bed Environment:
Table 9 – C3ISP subsystems on Test Bed Environment

Subsystem Virtual Machine Notes

DSA
Manager

isic3isp.iit.cnr.it We opted to have these two subsystems on
the same VM because of the small footprint
the DSA Manager should have. Since all the
components will be based on the micro-
services paradigm, it will be easy to move to
dedicated VM if necessary.

ISI isic3isp.iit.cnr.it

IAI iaic3isp.iit.cnr.it This VM has still to be created.

The rest of this section provides a short summary of the Test Bed Environment status.

10.2.1. Base configuration
In deliverable D7.1, we designed the Test Bed Environment and planned to have 4 VMs for the
Pilots (one for each Pilot), a VM for the ISI and a VM for IAI.
As of now, we have installed the VM for ISI. It is based on a 2 VCPU (on VMware hypervisor)
with 6 GB RAM, named isic3isp.iit.cnr.it. It runs Ubuntu 16.04.3 LTS. The Continuous
Integration server (Jenkins) on the Development Environment feeds this machine by installing
the built artefacts on it. We will setup shortly also the IAI VM, so that this environment will
become finally the C3ISP reference implementation of the C3ISP framework architecture.

10.2.2. Software configuration
The currently installed package is only an application server where the Development
Environment deploys the compiled artefacts:

• Tomcat v8.0.x, reachable at https://isic3isp.iit.cnr.it:8443/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 82 of 89

11. Conclusions
This deliverable describes the first version (at M12) of the C3ISP Framework reference
architecture, which is based on the requirements elicited in deliverable D7.1, as derived by the
Pilots use cases. The architecture has been designed to address the Pilots requirements. WP7
had always (and continue to have) a close interaction with WP6 with checkpoints for tuning
and steering the design effort to better fulfil the Pilots’ needs. We also traced the design
decisions with respect to the requirements (Section 9) in order to monitor and address the gaps.
This deliverable describes each component and its interaction with the whole framework, and
also defines different deployment models to address varying trust assumptions. It also identifies
and explores the functions and operations the C3ISP Framework provides to both the Prosumers
and Pilots’ applications. The resulting C3ISP Framework reference architecture provides a
generic and extensible framework that will serve as the basis for the next development
activities.
The architecture will be refined as the integration of the Pilots into the C3ISP Framework
progresses (WP2-5) and the core technologies matures (data sharing, analytics and crypto
technologies in WP8). In fact, we plan that both WPs will continuously feed WP7 with inputs
for design refinement during the whole project lifetime. In particular, the next M24 milestone
will see the release of the first version of the C3ISP Framework that will take also into account
this refinement process.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 83 of 89

12. Appendix 1: Differential Privacy
Differential Privacy [75] is a privacy definition that aims to protect a single individual from
harm that (s)he might suffer from participating in data collection while still allowing useful
statistical analysis about a population (i.e. a group of individuals).
Differential Privacy requires knowledge about the entire value domain, e.g. what is the largest
impact a record’s inclusion/exclusion can have on a function evaluation. This impact is called
sensitivity and is one of the two parameters of Differential Privacy. The other parameter, called
privacy parameter or simply ϵ, quantifies the potential loss of privacy (or, from another point
of view, the increase in accuracy) of the anonymisation.
Roughly, Differential Privacy works by adding noise scaled to the sensitivity of a function
evaluation and a desired privacy parameter, i.e. it “hides” the involvement of a single individual
while maintaining statistical inference over many individuals. Different ways to sample the
noise or perturb the data (referred to as mechanisms in the literature) might be required (or need
be developed) depending on what the purpose of the anonymised data is, i.e. what the desired
function evaluation is. For example, for single geo-location points Geo-Indistinguishability was
developed [72].
There are two models in Differential Privacy: the interactive and non-interactive model. In the
former model one adds a noise scalar n to a (aggregation) function f(·) for a value vector V: f(V)
+ n; where n, as mentioned before, is parameterised to “hide” the maximum impact a record
(i.e. one individual) can have on f(·). In the later model we add a noise vector N to the values V
and afterwards perform the function evaluation: f(V + N). The anonymisation tool that will be
extended for C3ISP only supports the non-interactive model, i.e. the parameterised addition of
noise to individual values. However, one could, for certain instances, call the tool on f(V) instead
of V and thus simulate the interactive model when properly parameterised.
As noted in [71] “the Fundamental Law of Information Recovery states that overly accurate
answers to too many questions will destroy privacy in a spectacular way” and that this “applies
to all techniques for privacy-preserving data analysis, and not just to differential privacy.”
Thus, the number of (overly accurate) answers needs limitation. This can be controlled with the
Usage Control model (see Continuous Authorization Engine in 4.1.1 and Obligation Engine in
4.1.2) and is outside the scope of the anonymisation itself.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 84 of 89

13. Appendix 2: Homomorphic Computation
Homomorphic Computation enables an untrusted server to evaluate arithmetic circuits on
ciphertexts without being able to decrypt inputs and outputs. In concrete terms, it is used to
evaluate polynomials over encrypted bits.
Let us give a first example. Let us denote HE, a homomorphic encryption function. Consider a
polynomial P(X,Y)=X+Y over integers and two integers 3 and 5. On clear data, the evaluation
of the polynomial returns 8. In homomorphic cryptography, we manipulate encrypted data. In
this case, we have two encryptions HE(3) and HE(5) of the two integers. The result of the
evaluation of P over these ciphertexts is HE(8). That is an encryption of the expected result.
These polynomials can be multivariate and are described with Boolean circuits. An adapted
way to describe a circuit is to use two Booleans gates: AND gates (binary multiplication) and
XOR (binary addition). Two important parameters have to be minimized for practicability, the
number of AND gates and the circuit multiplicative depth, that is the maximal number of AND
gates between an input and an output of the circuit.
Let us consider a second example. Consider the polynomial Q(X,Y)=X^2*Y^2. We can
evaluate this polynomial in different ways depending on operation order. A circuit permits to
indicate the computation order. Let us take a first circuit representing how Q(X,Y) is computed:

Figure 41: A Boolean circuit – un-optimised

The left boxes represent the circuit inputs. The right box is the circuit output. With this
representation, the multiplicative depth is the maximal number of arrows between an input and
an output of the circuit. Here, it is 3. We can do better (that is minimising the multiplicative
depth) by changing the order of computations:

Figure 42: A Boolean circuit – optimised

In this manner, the multiplicative depth is minimized. It is only 2. This permits to decrease time
and memory requirements.
Ideally, the multiplicative depth should be less than 20. Time and memory needs mainly depend
on security level and multiplicative depth. There is no standardised homomorphic
cryptosystem. This branch of cryptography began in 2009 [37]. Earlier, most of the
homomorphic cryptosystem proposed only one homomorphic operation (addition or
multiplication for instance) and thus less applications were proposed. Note that a homomorphic
scheme is probabilistic, so an attacker which has only access to ciphertexts could decrypt it
(non-specialists can refer to [88] for more information).

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 85 of 89

Specific requirements for HE computation using Cingulata tool
Cingulata tool needs constant data length as input, which requires a precomputation for certain
data types. Indeed, IPv4 addresses satisfy this requirement because they are represented by 4
bytes, while strings do not (string size is a parameter to consider).
Strings representations depend on:

• Character encoding;

• String size.

In our implementation, character encoding is (extended) ASCII, where a character is
represented with one byte. To address the non-constant string size issue, a solution is to encode
the string with zero padding and truncation. The encoded data is then stored as a fixed number
of bytes (this number is an additional parameter to consider).
Under those assumptions, the data representation becomes:

• Each IPv4 is stored as 4 bytes;

• Each ASCII character is stored as 1 byte;

• Each ASCII string is stored as X bytes, where X is a parameter;

We choose IPv4 rather than IPv6 addresses and ASCII rather than UTF-8 encoding, because
they both differ in data representation size (they both use more bytes): in homomorphic
cryptography, this parameter can have a significant impact on time and memory requirements.
To sum up, the parameters in our FHE analytics are:

• The input data (IPv4s, strings);

• Encoded data size (a constant integer for IPv4s, an integer parameter for strings);

• Number of data (the list size is a parameter).

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 86 of 89

14. References
This section lists the references used throughout the document:

[1] K. Brennan, A Guide to the Business Analysis Body of Knowledge, International
Institute of Business Analysis, 2009.

[2] STIX™ – Structured Threat Information Expression, https://oasis-open.github.io/cti-
documentation/, https://stixproject.github.io/, fetched on March 16th, 2017

[3] Guide to Cyber Threat Information Sharing, NIST Special Publication 800-150,
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-150.pdf, fetched on
March 16th, 2017

[4] CEF – Common Event Format, https://www.protect724.hpe.com/docs/DOC-1072,
fetched on March 16th, 2017

[5] B. Kepes, Cloudonomics: the Economics of Cloud Computing, Rackspace Hosting,
Diversity Limited, Aug. 2011

[6] Gartner, Gartner Says By 2020, a Corporate "No-Cloud" Policy Will Be as Rare as a
"No-Internet" Policy Is Today, http://www.gartner.com/newsroom/id/3354117, Jun.
2016, fetched on March 16th, 2017

[7] CybOX™ – Cyber Observable eXpression, https://oasis-open.github.io/cti-
documentation/, https://cyboxproject.github.io/, fetched on March 16th, 2017

[8] TAXII™ – Trusted Automated eXchange of Indicator Information, https://oasis-
open.github.io/cti-documentation/, https://taxiiproject.github.io/, fetched on March
16th, 2017

[9] OpenC2 – Open Command and Control, http://openc2.org/, fetched on March 16th, 2017
[10] S, Carpov; T.H. Nguyen; R. Sirdey; G. Constantino; F. Martinelli; Practical

Privacy-Preserving Medical Diagnosis Using Homomorphic Encryption
[11] S. Carpov, P. Dubrulle, R. Sirdey, "Armadillo: a compilation chain for privacy

preserving applications", Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security (3rd International Workshop on Security in
Cloud Computing), pp. 13-19, 2015

[12] Borghoff J. et al. (2012) PRINCE – A Low-Latency Block Cipher for Pervasive
Computing Applications. In: Wang X., Sako K. (eds) Advances in Cryptology –
ASIACRYPT 2012. ASIACRYPT 2012. Lecture Notes in Computer Science, vol 7658.
Springer, Berlin, Heidelberg

[13] Albrecht M.R., Rechberger C., Schneider T., Tiessen T., Zohner M. (2015)
Ciphers for MPC and FHE. In: Oswald E., Fischlin M. (eds) Advances in Cryptology -
- EUROCRYPT 2015. EUROCRYPT 2015. Lecture Notes in Computer Science, vol
9056. Springer, Berlin, Heidelberg

[14] Canteaut A. et al. (2016) Stream Ciphers: A Practical Solution for Efficient
Homomorphic-Ciphertext Compression. In: Peyrin T. (eds) Fast Software Encryption.
FSE 2016. Lecture Notes in Computer Science, vol 9783. Springer, Berlin, Heidelberg

[15] ECRYPT - European Network of Excellence in Cryptology: The eSTREAM
StreamCipher Project (2005).

[16] De Cannière C., Preneel B. (2008) Trivium. In: Robshaw M., Billet O. (eds)
New Stream Cipher Designs. Lecture Notes in Computer Science, vol 4986. Springer,
Berlin, Heidelberg

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 87 of 89

[17] N. Bouzerna, R. Sirdey, O. Stan, T.-H. Nguyen and P. Wolf, "An architecture
for practical confidentiality-strengthened face authentication embedding homomorphic
cryptography", Proceedings of the 8th IEEE International Conference on Cloud
Computing Technology and Science, pp. 399-406, 2016.

[18] Junfeng Fan, Frederik Vercauteren: Somewhat Practical Fully Homomorphic
Encryption. IACR Cryptology ePrint Archive 2012: 144 (2012)

[19] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An Industry-Standard
API for Shared-Memory Programming. IEEE Comput. Sci. Eng. 5, 1 (January 1998),
46-55. DOI=http://dx.doi.org/10.1109/99.660313

[20] Berkeley Verification and Synthesis Research Center, A System for Sequential
Synthesis and Verification https://bitbucket.org/alanmi/abc

[21] Stober, Thomas –Hansmann, Uwe “Agile Software Development: Best
Practices for Large Software Development Projects” -Springer 2009

[22] Bass, Len Ingo Weber, Zhu Liming – Hansmann, Uwe DevOps: A Software
Architect’s Perspective” –Addison-Wesley Professional 2015

[23] A Python module for creating JUnit XML test result documents,
https://pypi.python.org/pypi/junit-xml, fetched on March 16th, 2017

[24] NIST Glossary of Key Information Security Terms,
http://nvlpubs.nist.gov/nistpubs/ir/2013/NIST.IR.7298r2.pdf, fetched on March 16th,
2017

[25] Gartner Newsroom, http://www.gartner.com/newsroom/id/3354117, fetched on
March 16th, 2017

[26] I. Matteucci, M. Petrocchi, and M. L. Sbodio. CNL4DSA: a Controlled Natural
Language for Data Sharing Agreements. In SAC: Privacy on the Web Track. ACM,
2010. 21, 23, 52

[27] Grigoris Antoniou and Frank Van Harmelen. Web Ontology Language: OWL.
In Handbook on Ontologies in Information Systems, pages 67–92. Springer, 2003. 18

[28] Definition of Document Oriented Database
https://www.techopedia.com/definition/30329/document-oriented-database

[29] Original BSD syslog, https://tools.ietf.org/html/rfc3164
[30] RFC5424, https://tools.ietf.org/html/rfc5424
[31] “Common Event Format” , ArcSight, Inc. July 22, 2010 Revision 16,

https://kc.mcafee.com/resources/sites/MCAFEE/content/live/CORP_KNOWLEDGEB
ASE/78000/KB78712/en_US/CEF_White_Paper_20100722.pdf

[32] Representational State Transfer (REST)
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

[33] Unified Modeling Language - UML, http://www.uml.org/
[34] Pub, NIST FIPS. "197: Advanced encryption standard (AES)." Federal

information processing standards publication 197.441 (2001): 0311.
[35] Fan, Junfeng, and Frederik Vercauteren. "Somewhat Practical Fully

Homomorphic Encryption." IACR Cryptology ePrint Archive 2012 (2012): 144.
[36] Menezes, A. J., Van Oorschot, P. C., & Vanstone, S. A. (1996). Handbook of

applied cryptography. CRC press.

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 88 of 89

[37] Gentry, Craig. "Fully homomorphic encryption using ideal lattices." STOC.
Vol. 9. No. 2009. 2009.

[38] Barker, Elaine, et al. "Recommendation for key management part 1: General
(revision 3)." NIST special publication 800.57 (2012): 1-147. Key Management
Guidelines SP 800-57 Part 2, Best Practices for Key Management Organizations

[39] Key Management Guidelines SP 800-57 Part 3, Application-Specific Key
Management Guidance

[40] Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode
(GCM)

[41] Shirey, R. "RFC 2828–Internet security glossary, 2000." URL:
http://www.faqs.org/rfcs/rfc2828. Html (2003).

[42] Oppliger, Rolf. Contemporary cryptography. Artech House, 2011.
[43] RFC 6239, Suite B Cryptographic Suites for Secure Shell (SSH)
[44] RFC 6379, Suite B Cryptographic Suites for Ipsec
[45] RFC 6460, Suite B Profile for Transport Layer Security (TLS)
[46] Lyubashevsky, Vadim, Chris Peikert, and Oded Regev. "On ideal lattices and

learning with errors over rings." Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, Berlin, Heidelberg, 2010.

[47] Fontaine, Caroline, and Fabien Galand. "A survey of homomorphic encryption
for non specialists." EURASIP Journal on Information Security 2007.1 (2007): 013801.

[48] Gentry, C., S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES
circuit (updated implementation). IACR Cryptology ePrint Archive: Report 2012/099,
https://eprint. iacr. org/2012/099. Pdf, 2015.

[49] "FIPS PUB 140-2" (PDF). NIST. 2002-12-03. Retrieved 2017-03-
31.http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf

[50] Canteaut, Anne, et al. "Stream ciphers: A practical solution for efficient
homomorphic-ciphertext compression." International Conference on Fast Software
Encryption. Springer Berlin Heidelberg, 2016.

[51] De Canniere, Christophe, and Bart Preneel. "Trivium." New Stream Cipher
Designs (2008): 244-266.

[52] Amazon S3 Data Lake https://aws.amazon.com/big-data/data-lake-on-aws/
[53] JavaScript Object Notation official site: http://json.org/
[54] Hadoop Distributed File System (HDFS) URL:

https://hadoop.apache.org/docs/r1.2.1/hdfs_user_guide.html
[55] OpenStack™ Swift URL: https://docs.openstack.org/swift/latest/
[56] MongoDB official web site: https://www.mongodb.com/
[57] RFC 6749, OAuth2: https://tools.ietf.org/html/rfc6749, http://oauth.net/2/
[58] Unity 3D: https://unity3d.com/
[59] A One-Time Password System: https://www.rfc-editor.org/rfc/rfc2289.txt
[60] Lightweight Directory Access Protocol: https://msdn.microsoft.com/en-

us/library/aa367008(v=vs.85).aspx
[61] OpenID Specification: http://openid.net/developers/specs/

H2020-DS-2015-1 C3ISP – GA#700294 Deliverable D7.2

Page 89 of 89

[62] Apache Hive, URL: https://hive.apache.org/
[63] Cloudera Impala, URL: https://www.cloudera.com/products/open-

source/apache-hadoop/impala.html
[64] Jaehong Park, R. S. (2002). Towards usage control models: beyond traditional

access control. SA CMA T, (pp. 57 - 64).
[65] Oppliger, Rolf. Contemporary cryptography. Artech House, 2011
[66] Fundamental modeling concepts (FMC), URL: http://www.fmc-modeling.org
[67] Sticky Policy: An Approach for Managing Privacy across Multiple Parties,

URL: http://ieeexplore.ieee.org/document/5959137/
[68] PostgreSQL Database, URL: https://www.postgresql.org/
[69] Transport Layer Security, URL: https://tools.ietf.org/html/rfc5246
[70] LDAP over SSL, URL:

https://social.technet.microsoft.com/wiki/contents/articles/2980.ldap-over-ssl-ldaps-
certificate.aspx

[71] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential
privacy. Foundations and Trends in Theoretical Computer Science, 2014.

[72] Miguel E Andrés, Nicolás E Bordenabe, Konstantinos Chatzikokolakis, and
Catuscia Palamidessi. Geo-indistinguishability: Differential privacy for location-based
systems. In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, 2013

[73] MySQL Database, URL: https://www.mysql.com/it/
[74] Oracle DBMS, URL: https://www.oracle.com/database/index.html
[75] Roth, Cynthia Dwork and Aaron, The algorithmic foundations of differential

privacy, Foundations and Trends in Theoretical Computer Science, 2014

